J. Mater. Sci. Technol. ›› 2022, Vol. 120: 108-117.DOI: 10.1016/j.jmst.2022.01.005
• Research Article • Previous Articles Next Articles
Sensen Chaia, Shiyu Zhongb, Qingshan Yanga, Daliang Yua, Qingwei Daia,*(), Hehe Zhanga,c, Limeng Yina,c, Gang Wanga, Zongxiang Yaoa
Received:
2021-11-16
Revised:
2022-01-04
Accepted:
2022-01-04
Published:
2022-09-01
Online:
2022-03-03
Contact:
Qingwei Dai
About author:
* E-mail address: daiqingwei@cqust.edu.cn (Q. Dai).Sensen Chai, Shiyu Zhong, Qingshan Yang, Daliang Yu, Qingwei Dai, Hehe Zhang, Limeng Yin, Gang Wang, Zongxiang Yao. Transformation of Laves phases and its effect on the mechanical properties of TIG welded Mg-Al-Ca-Mn alloys[J]. J. Mater. Sci. Technol., 2022, 120: 108-117.
Sample No. | Nomenclatures | Ca | Al | Mn | Mg | Ca/Al |
---|---|---|---|---|---|---|
X2 | Mg-2Ca-0.5Mn | 2.11 | - | 0.62 | Bal. | - |
XA21 | Mg-1Al-2Ca-0.5Mn | 2.23 | 1.35 | 0.54 | Bal. | 1.65 |
XA25 | Mg-5Al-2Ca-0.5Mn | 1.95 | 4.85 | 0.53 | Bal. | 0.40 |
Table 1. Chemical compositions of the alloy sheets and welding fillers (wt.%).
Sample No. | Nomenclatures | Ca | Al | Mn | Mg | Ca/Al |
---|---|---|---|---|---|---|
X2 | Mg-2Ca-0.5Mn | 2.11 | - | 0.62 | Bal. | - |
XA21 | Mg-1Al-2Ca-0.5Mn | 2.23 | 1.35 | 0.54 | Bal. | 1.65 |
XA25 | Mg-5Al-2Ca-0.5Mn | 1.95 | 4.85 | 0.53 | Bal. | 0.40 |
Fig. 3. Microstructure of the FZ, FZ edge and HAZ in the (a-c) X2, (d-f) XA21 and (g-i) XA25 alloy joints. The annotation in each image indicates where it was taken.
Point | Composition/wt.% | Ca/Al | Composition/at.% | Ca/Al | ||||
---|---|---|---|---|---|---|---|---|
Ca | Al | Mg | Ca | Al | Mg | |||
1 | 31.79 | 9.7 | 58.51 | 3.28 | 22.28 | 10.1 | 67.62 | 2.21 |
2 | 41.71 | 43.08 | 15.21 | 0.97 | 31.89 | 48.93 | 19.18 | 0.65 |
3 | 32.14 | 40.55 | 27.31 | 0.79 | 23.39 | 43.84 | 32.77 | 0.53 |
Table 2. EDS results tested from Fig. 7.
Point | Composition/wt.% | Ca/Al | Composition/at.% | Ca/Al | ||||
---|---|---|---|---|---|---|---|---|
Ca | Al | Mg | Ca | Al | Mg | |||
1 | 31.79 | 9.7 | 58.51 | 3.28 | 22.28 | 10.1 | 67.62 | 2.21 |
2 | 41.71 | 43.08 | 15.21 | 0.97 | 31.89 | 48.93 | 19.18 | 0.65 |
3 | 32.14 | 40.55 | 27.31 | 0.79 | 23.39 | 43.84 | 32.77 | 0.53 |
Fig. 8. FE-SEM images taken from the HAZ of (a, d) X2, (b, e) XA21 and (c, f) XA25 alloy joints. The annotation in each image indicates where it was taken.
Point | Composition/wt.% | Ca/Al | Composition/at.% | Ca/Al | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca | Al | Mn | Mg | Ca | Al | Mn | Mg | |||
1 | 36.92 | 38.52 | 0.34 | 24.2 | 0.96 | 27.48 | 42.60 | 0.18 | 29.71 | 0.65 |
2 | 30.53 | 44.43 | 0.32 | 24.7 | 0.69 | 22.20 | 47.99 | 0.17 | 29.62 | 0.46 |
3 | 1.77 | 26.8 | 36.92 | 34.49 | - | 1.41 | 31.74 | 21.47 | 45.35 | - |
4 | 2.64 | 21.09 | 18.27 | 57.97 | - | 1.85 | 21.92 | 9.32 | 66.89 | - |
5 | 2.41 | 22.01 | 21.46 | 54.09 | - | 1.72 | 23.35 | 11.18 | 63.72 | - |
Table 3. EDS results tested from Fig. 10.
Point | Composition/wt.% | Ca/Al | Composition/at.% | Ca/Al | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca | Al | Mn | Mg | Ca | Al | Mn | Mg | |||
1 | 36.92 | 38.52 | 0.34 | 24.2 | 0.96 | 27.48 | 42.60 | 0.18 | 29.71 | 0.65 |
2 | 30.53 | 44.43 | 0.32 | 24.7 | 0.69 | 22.20 | 47.99 | 0.17 | 29.62 | 0.46 |
3 | 1.77 | 26.8 | 36.92 | 34.49 | - | 1.41 | 31.74 | 21.47 | 45.35 | - |
4 | 2.64 | 21.09 | 18.27 | 57.97 | - | 1.85 | 21.92 | 9.32 | 66.89 | - |
5 | 2.41 | 22.01 | 21.46 | 54.09 | - | 1.72 | 23.35 | 11.18 | 63.72 | - |
[1] |
J. Zhang, Y. Huang, J. Xiang, G. Huang, X. Chen, H. Zhou, B. Jiang, A. Tang, F. Pan, Mater. Sci. Eng. A 800 (2021) 140320.
DOI URL |
[2] |
M. Gao, H. Wang, K. Hao, H. Mu, X. Zeng, J. Manuf. Process. 45 (2019) 92-99.
DOI URL |
[3] |
K. Singh, G. Singh, H. Singh, J. Magnes. Alloy. 6 (2018) 399-416.
DOI URL |
[4] |
X. Wang, Y. Morisada, H. Fujii, J. Mater. Sci. Technol. 85 (2021) 158-168.
DOI URL |
[5] |
F. Yang, J. Zhou, R. Ding, J. Mater. Sci. Technol. 34 (2018) 2240-2245.
DOI URL |
[6] |
R.Z. Xu, D.R. Ni, Q. Yang, C.Z. Liu, Z.Y. Ma, J. Mater. Sci. Technol. 32 (2016) 76-88.
DOI URL |
[7] |
B. Kondori, R. Mahmudi, Mater. Sci. Eng. A 700 (2017) 438-447.
DOI URL |
[8] |
H. Pan, R. Kang, J. Li, H. Xie, Z. Zeng, Q. Huang, C. Yang, Y. Ren, G. Qin, Acta Mater 186 (2020) 278-290.
DOI URL |
[9] |
T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T.T. Sasaki, L. Ma, K. Hono, S. Kamado, Acta Mater 130 (2017) 261-270.
DOI URL |
[10] |
A. Zhang, R. Kang, L. Wu, H. Pan, H. Xie, Q. Huang, Y. Liu, Z. Ai, L. Ma, Y. Ren, G. Qin, Mater. Sci. Eng. A 754 (2019) 269-274.
DOI URL |
[11] |
J. Victoria-Hernández, S. Yi, D. Klaumünzer, D. Letzig, Mater. Sci. Eng. A 761 (2019) 138054.
DOI URL |
[12] |
S. Sanyal, M. Paliwal, T.K. Bandyopadhyay, S. Mandal, Mater. Sci. Eng. A 800 (2021) 140322.
DOI URL |
[13] |
G. Han, D. Chen, G. Chen, J. Huang, J. Mater. Sci. Technol. 34 (2018) 2063-2068.
DOI URL |
[14] |
H.A. Elamami,, A. Incesu, K. Korgiopoulos, M. Pekguleryuz, A. Gungor, J. Alloy. Compd. 764 (2018) 216-225.
DOI URL |
[15] |
Z.T. Li, X.D. Zhang, M.Y. Zheng, X.G. Qiao, K. Wu, C. Xu, S. Kamado, Mater. Sci. Eng. A 682 (2017) 423-432.
DOI URL |
[16] |
Z.T. Li, X.G. Qiao, C. Xu, S. Kamado, M.Y. Zheng, A.A. Luo, J. Alloy. Compd. 792 (2019) 130-141.
DOI URL |
[17] | Z.T. Li, X.G. Qiao, C. Xu, X.Q. Liu, S. Kamado, M.Y. Zheng, J. Alloy. Compd. 836 (2020). |
[18] |
M. Zhou, Y. Morisada, H. Fujii, J. Magnes. Alloy. 8 (2020) 91-102.
DOI URL |
[19] |
Q. Huang, Y. Liu, M. Tong, H. Pan, C. Yang, T. Luo, Y. Yang, Vacuum 177 (2020) 109356.
DOI URL |
[20] |
N. Xu, R. Feng, Q. Song, Y. Bao, J. Materi. Res. Technol. 8 (2019) 4448-4456.
DOI URL |
[21] |
S. Inoue, M. Yamasaki, M. Ohata, S. Kakiuchi, Y. Kawamura, H. Terasaki, Mater. Sci. Eng. A 799 (2021) 140090.
DOI URL |
[22] | K. Hao, H. Wang, M. Gao, R. Wu, X. Zeng, J. Mater. Res. Techno. 8 (2019) 3044-3053. |
[23] |
Z. Lei, J. Bi, P. Li, Q. Li, Y. Chen, D. Zhang, Opt. Laser Technol. 108 (2018) 409-417.
DOI URL |
[24] |
Y.S. Jeong, W.J. Kim, Corros. Sci. 82 (2014) 392-403.
DOI URL |
[25] |
C. Wang, A. Ma, J. Sun, H. Liu, H. Huang, Z. Yang, J. Jiang, J. Alloy. Compd. 793 (2019) 259-270.
DOI URL |
[26] |
A. Suzuki, N.D. Saddock, J.W. Jones, T.M. Pollock, Acta Mater 53 (2005) 2823-2834.
DOI URL |
[27] |
Y. Liu, N. Wang, J. Wang, B. Ma, D. Zhao, Mater. Charact. 142 (2018) 377-382.
DOI URL |
[28] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[29] |
Y. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater. 178 (2020) 422-427.
DOI URL |
[30] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[31] |
Q. Luo, C. Zhai, Q. Gu, W. Zhu, Q. Li, J. Alloy. Compd. 814 (2020) 152297.
DOI URL |
[32] |
Y. Pang, D. Sun, Q. Gu, K.-C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[33] |
T. Xie, H. Shi, H. Wang, Q. Luo, Q. Li, K.-C. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[34] |
Z. Jiang, B. Jiang, H. Yang, Q. Yang, J. Dai, F. Pan, J. Alloy. Compd. 647 (2015) 357-363.
DOI URL |
[35] |
S.W. Xu, K. Oh-ishi, S. Kamado, H. Takahashi, T. Homma, Mater. Sci. Eng. A 542 (2012) 71-78.
DOI URL |
[36] |
S. Chai, D. Zhang, X. Fan, D. Yu, F. Pan, Mater. Sci. Eng. A 648 (2015) 392-400.
DOI URL |
[37] |
S. Niknejad, L. Liu, M.Y. Lee, S. Esmaeili, N.Y. Zhou, Mater. Sci. Eng. A 618 (2014) 323-334.
DOI URL |
[38] |
F. Briffod, T. Shiraiwa, M. Enoki, Mater. Sci. Eng. A 772 (2020) 138753.
DOI URL |
[39] |
S. Chai, D. Zhang, Y. Dong, F. Pan, Mater. Sci. Eng. A 620 (2015) 1-9.
DOI URL |
[40] |
S. Chai, D. Zhang, T. Tang, F. Guo, F. Pan, Mater. Sci. Eng. A 646 (2015) 66-74.
DOI URL |
[1] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[2] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
[3] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[4] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[5] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[6] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[7] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[8] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[9] | Pengsheng Xue, Lida Zhu, Jinsheng Ning, Peihua Xu, Shuhao Wang, Zhichao Yang, Yuan Ren, Guiru Meng. The crystallographic texture and dependent mechanical properties of the CrCoNi medium-entropy alloy by laser remelting strategy [J]. J. Mater. Sci. Technol., 2022, 111(0): 245-255. |
[10] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
[11] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
[12] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[13] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
[14] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[15] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||