J. Mater. Sci. Technol. ›› 2022, Vol. 117: 8-22.DOI: 10.1016/j.jmst.2021.12.010
• Research Article • Previous Articles Next Articles
Young-Kyun Kima,b, Kee-Ahn Leea,*()
Received:
2021-09-13
Revised:
2021-11-30
Accepted:
2021-12-19
Published:
2022-01-29
Online:
2022-08-01
Contact:
Kee-Ahn Lee
About author:
∗E-mail address: keeahn@inha.ac.kr (K.-A. Lee).Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion[J]. J. Mater. Sci. Technol., 2022, 117: 8-22.
Fig. 1. (a) Heat-treatment strategies for the SLM-built carbon-containing CrMnFeCoNi HEAs and (b) corresponding Vickers hardness values of the heat-treated alloys.
Fig. 2. Inverse pole figure maps showing the grain structures of the as-built and aged alloys with different carbon contents (0.5 at% C, 1.0 at% C, and 1.5 at% C).
Fig. 6. Typical tensile stress-strain curves of the SLM-built C-HEAs recorded by varying the nominal carbon content and aging treatment conditions: (a) 0.5C—HEA, (b) 1.0C—HEA, and (c) 1.5C—HEA; (d) alloys aged at 650 °C for 1 h.
Sample ID | Condition | Yield strength, MPa | Ultimate tensile strength, MPa | Elongation,% |
---|---|---|---|---|
0.5C-HEA | As-built | 653.0±8.3 | 766.3±18.5 | 28.9±1.3 |
H800 | 557.2±13.6 | 824.2±15.3 | 37.4±2.0 | |
H650 | 650.8±10.5 | 884.9±12.2 | 31.7±1.9 | |
1.0C-HEA | As-built | 751.6±13.2 | 895.0±22.3 | 31.6±2.5 |
H800 | 722.6±8.1 | 1014.2±19.5 | 28.3±2.3 | |
H650 | 856.2±10.6 | 1101.2±25.8 | 19.1±2.6 | |
1.5C-HEA | As-built | 753.7±15.8 | 911.1±25.1 | 38.1±2.8 |
H800 | 747.8±8.2 | 1054.4±18.6 | 25.9±3.2 | |
H650 | 920.6±18.8 | 1178.1±15.3 | 20.1±2.4 | |
Annealed CrMnFeCoNi HEA [6] | 293.1 | 625.6 | 63.1 |
Table 1. Tensile test data of the SLM-built C-HEAs in the as-built state and aged states.
Sample ID | Condition | Yield strength, MPa | Ultimate tensile strength, MPa | Elongation,% |
---|---|---|---|---|
0.5C-HEA | As-built | 653.0±8.3 | 766.3±18.5 | 28.9±1.3 |
H800 | 557.2±13.6 | 824.2±15.3 | 37.4±2.0 | |
H650 | 650.8±10.5 | 884.9±12.2 | 31.7±1.9 | |
1.0C-HEA | As-built | 751.6±13.2 | 895.0±22.3 | 31.6±2.5 |
H800 | 722.6±8.1 | 1014.2±19.5 | 28.3±2.3 | |
H650 | 856.2±10.6 | 1101.2±25.8 | 19.1±2.6 | |
1.5C-HEA | As-built | 753.7±15.8 | 911.1±25.1 | 38.1±2.8 |
H800 | 747.8±8.2 | 1054.4±18.6 | 25.9±3.2 | |
H650 | 920.6±18.8 | 1178.1±15.3 | 20.1±2.4 | |
Annealed CrMnFeCoNi HEA [6] | 293.1 | 625.6 | 63.1 |
Fig. 7. (a) Yield strength as a function of real carbon content in SLM-built 1.5C-HEA under different conditions and (b) comparison of the ultimate tensile strength vs. the elongation-to-failure of SLM-built carbon-containing CrMnFeCoNi HEAs with other CrMnFeCoNi HEAs.
Fig. 9. High magnification tensile fractographies showing the magnitude of the dimples and precipitates in the (a1-a3) as-built alloys and (b1-b3) H650 alloys.
Fig. 10. Tensile deformation microstructure of the 0.5C-HEAs (a1, a2) as-built alloy and (b1, b2) H650 alloy, and the 1.5C-HEA (c1, c2) as-built alloy and (d1, d2) H650 alloy.
Fig. 11. (a1, a2) Grain boundary detachment observed at tensile fractured surface and (b) HAADF-STEM image and corresponding EDS elemental mapping results of the SLM-built 1.5C-HEA H650 alloy.
Fig. 12. Electron channeling contrast images showing the deformation microstructure of the 1.5C-HEA (a) as-built alloy, (b) H650 alloy, and (c) magnified image of the area demarcated in (b).
Fig. 13. High magnification ECC images of the SLM-built 1.5C-HEAs: (a) as-built and (b) H650. (c) Schematic illustration showing the microstructure evolution at the sub-grain scale.
[1] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A(2004) 213-218. |
[2] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[3] |
W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Prog. Mater. Sci. 118 (2021) 100777.
DOI URL |
[4] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
DOI URL |
[5] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[6] |
Y.-K. Kim, G.-.S. Ham, H.S. Kim, K.-.A. Lee, Intermetallics 111 (2019) 106486.
DOI URL |
[7] |
Y.-K. Kim, Y.-.A. Joo, H.S. Kim, K.-.A. Lee, Intermetallics 98 (2018) 45-53.
DOI URL |
[8] |
H. Luo, Z. Li, A.M. Mingers, D. Raabe, Corros. Sci. 134 (2018) 131-139.
DOI URL |
[9] |
Y.-K. Kim, J.-.Y. Suh, K.-.A. Lee, Mater. Sci. Eng. A 796 (2020) 140039.
DOI URL |
[10] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater 118 (2016) 152-163.
DOI URL |
[11] |
Z. Li, D. Raabe, JOM 69 (2017) 2099-2106.
DOI URL |
[12] |
L.J. Santodonato, P.K. Liaw, R.R. Unocic, H. Bei, J.R. Morris, Nat. Commun. 9 (2018) 4520.
DOI PMID |
[13] | K.G. Pradeep, C.C. Tasan, M.J. Yao, Y. Deng, H. Springer, D. Raabe, Mater. Sci. Eng. A 648 (2015) 183-192. |
[14] |
Y. Lu, Y. Dong, H. Jiang, Z. Wang, Z. Cao, S. Guo, T. Wang, T. Li, P.K. Liaw, Scr. Mater. 187 (2020) 202-209.
DOI URL |
[15] |
P. Shi, Y. Zhong, Y. Li, W. Ren, T. Zheng, Z. Shen, B. Yang, J. Peng, P. Hu, Y. Zhang, P.K. Law, Y. Zhu, Mater. Today 41 (2020) 62-71.
DOI URL |
[16] |
J. Moon, J.M. Park, J.W. Bae, H.-.S. Do, B.-.J. Lee, H.S. Kim, Acta Mater 193 (2020) 71-82.
DOI URL |
[17] |
Z. Li, Acta Mater 164 (2019) 400-412.
DOI URL |
[18] | M.V. Klimova, A.O. Semenyuk, D.G. Shaysultanov, G.A. Salishchev, S.V. Zherebtsov, N.D. Stepanov, J. Alloy. Compd. 811 (2019) 1520 0 0. |
[19] |
W. Wu, R. Zhou, B. Wei, S. Ni, Y. Liu, M. Song, Mater. Charact. 144 (2018) 605-610.
DOI URL |
[20] |
J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.-.H. Yu, H.S. Kim, Mater. Res. Lett. 8 (2020) 1-7.
DOI URL |
[21] |
I. Moravcik, H. Hadraba, L. Li, I. Dlouhy, D. Raabe, Z. Li, Scr. Mater. 178 (2020) 391-397.
DOI URL |
[22] | M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, Y. Liu, Appl. Mater. Today 18 (2020) 100498. |
[23] |
G. Hakan, Z. Mohsen, Mater. Res. Express 7 (2020) 016516.
DOI URL |
[24] |
J.B. Seol, J.W. Bae, J.G. Kim, H. Sung, Z. Li, H.H. Lee, S.H. Shim, J.H. Jang, W.-.S. Ko, S.I. Hong, H.S. Kim, Acta Mater 194 (2020) 366-377.
DOI URL |
[25] |
Z. Wang, I. Baker, Mater. Lett. 180 (2016) 153-156.
DOI URL |
[26] |
H. Luo, Z. Li, D. Raabe, Sci. Rep. 7 (2017) 9892.
DOI URL |
[27] |
B. AlMangour, Y.-.K. Kim, D. Grzesiak, K.A. Lee, Comp. Part B 156 (2019) 51-63.
DOI URL |
[28] |
Y.-K. Kim, S.-.J. Youn, S.-.W. Kim, J. Hong, K.-.A. Lee, Mater. Sci. Eng. A 763 (2019) 138138.
DOI URL |
[29] |
P. Wang, M.L.S. Nai, S. Lu, J. Bai, B. Zhang, J. Wei, JOM 69 (2017) 2738-2744.
DOI URL |
[30] |
P. Wang, X. Tan, M.L.S. Nai, S.B. Tor, J. Wei, Mater. Des. 95 (2016) 287-295.
DOI URL |
[31] |
Z.G. Zhu, X.H. Ahn, W.J. Lu, Z.M. Li, F.L. Ng, X.Z. Lao, U. Ramamurty, S.M.L. Nai, J. Wei, Mater. Res. Lett. 7 (2019) 453-459.
DOI URL |
[32] |
W. Wu, R. Zhou, B. Wei, S. Ni, Y. Liu, M. Song, Mater. Charact. 144 (2018) 605-610.
DOI URL |
[33] |
D. Zhao, Q. Yang, D. Wang, M. Yan, P. Wang, M. Jiang, C. Lium, D. Diao, C. Lao, Z. Chen, Z. Liu, Y. Wu, Z. Lu, Virtual Phys. Prototyp. 15 (2020) 532-542.
DOI URL |
[34] | K. Zhou, Z. Wang, F. He, S. Liu, J. Li, J.-.J. Kai, J. Wang, Addit. Manuf. 35 (2020) 101410. |
[35] |
P. Chen, C. Yang, S. Li, M.M. Attallah, M. Yang, Mater. Des. 194 (2020) 108966.
DOI URL |
[36] | M.Y. He, Y.F. Shen, N. Jia, P.K. Liaw, Appl. Mater. Today 25 (2021) 101162. |
[37] |
Y.-K. Kim, J.-.H. Yu, H.S. Kim, K.-.A. Lee, Comp. Part B 210 (2021) 108638.
DOI URL |
[38] |
N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, G.A. Salishchev, J. Alloys Compd. 687 (2016) 59-71.
DOI URL |
[39] |
Z. Tong, X. Ren, J. Jiao, W. Zhou, Y. Ren, Y. Ye, E.A. Larson, J. Gu, J. Alloy. Compd. 785 (2019) 1144-1159.
DOI URL |
[40] |
M. Klimova, D. Shaysultanov, A. Semenyuk, S. Zherebtsov, N. Stepanov, J. Alloy. Compd. 851 (2021) 156839.
DOI URL |
[41] |
Y.-K. Kim, J.H. Kim, Y.-.J. Kim, D.N. Seidman, K.-.A. Lee, Corros. Sci. 174 (2020) 108833.
DOI URL |
[42] |
J.-.H. Gwon, J.-.H. Kim, K.-.A. Lee, J. Nucl. Mater. 459 (2015) 205-216.
DOI URL |
[43] | Y.-K. Kim, Y.-.A. Joo, J.-.K. Park, H.-.J. Kim, M.-.S. Kong, K.-.A. Lee, Korean J. Met. Mater. 55 (2017) 862-869. |
[44] |
H.S. Zurob, Y. Brechet, G. Purdy, Acta Mater 49 (2001) 4183-4190.
DOI URL |
[45] |
Y.-.K. Kim, J. Choe, K.-.A. Lee, J. Alloy. Comp. 805 (2019) 680-691.
DOI URL |
[46] | H. Buken, E. Kozeschnik, Metall. Mater. Trans. A 48A (2017) 2812-2818. |
[47] |
J.G. Kim, J.M. Park, J.B. Seol, J. Choe, J.-.H. Yu, S. Yang, H.S. Kim, Mater. Sci. Eng. A 773 (2020) 138726.
DOI URL |
[48] |
G.D. Barmparis, Z. Lodziana, L. Lopez, L.N. Remediakis, Beilstein J. Nanotechnol. 6 (2015) 361-368.
DOI URL |
[49] |
B. Li, L. Zhang, Y. Xu, Z. Liu, B. Qian, F. Xuan, Powd. Technol. 360 (2020) 509-521.
DOI URL |
[50] | M.A. Melia, J.D. Carroll, S.R. Whetten, S.N. Esmaeely, J. Locke, E. White, I. An- derson, M. Chandross, J.R. Michael, N. Argibay, E.J. Schindelholz, A.B. Kustas, Addit. Manuf. 29 (2019) 100833. |
[51] |
S. Xiang, J. Li, H. Luan, A. Amar, S. Lu, K. Li, L. Zhang, X. Liu, G. Le, X. Wang, F. Qu, W. Zhang, D. Wang, Q. Li, Mater. Sci. Eng. A 743 (2019) 412-417.
DOI URL |
[52] |
R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, J. Alloy. Comp. 746 (2018) 125-134.
DOI URL |
[53] |
Z.G. Zhu, X.H. Ahn, W.J. Lu, Z.M. Li, F.L. Ng, X.Z. Lao, U. Ramamurty, S.M.L. Nai, J. Wei, Mater. Res. Lett. 7 (2019) 453-459.
DOI URL |
[54] |
P. Wang, P. Huang, F.L. Ng, W.J. Sin, S. Lu, M.L.S. Nai, Z. Dong, J. Wei, Mater. Des. 168 (2019) 107576.
DOI URL |
[55] |
S. Zherebtsov, N. Stepanov, Y. Lvanisenko, D. Shaysultanov, N. Yurchenko, M. Klimova, G. Salishchev, Metals (Basel) 8 (2018) 123.
DOI URL |
[56] |
S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang, Mater. Sci. Eng. A 712 (2018) 603-607.
DOI URL |
[57] |
J. Yoo, W.-M. Choi, B.-J. Lee, G.-Y. Kim, H. Kim, W.-D. Choi, Y.-J. Oh, S. Lee, Met. Mater. Int. 26 (2020) 1506-1514.
DOI URL |
[58] |
G.-H. Zhao, X. Xu, D. Dye, P.E.J. Rivera-Daz-del-Castillo, Acta Mater 183 (2020) 155-164.
DOI URL |
[1] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[2] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[3] | W.T. Lin, G.M. Yeli, G. Wang, J.H. Lin, S.J. Zhao, D. Chen, S.F. Liu, F.L. Meng, Y.R. Li, F. He, Y. Lu, J.J. Kai. He-enhanced heterogeneity of radiation-induced segregation in FeNiCoCr high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 226-233. |
[4] | MengCheng Deng, Shang Sui, Bo Yao, Liang Ma, Xin Lin, Jing Chen. Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique [J]. J. Mater. Sci. Technol., 2022, 101(0): 308-320. |
[5] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
[6] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[7] | L. Zhao, L. Jiang, L.X. Yang, H. Wang, W.Y. Zhang, G.Y. Ji, X. Zhou, W.A. Curtin, X.B. Chen, P.K. Liaw, S.Y. Chen, H.Z. Wang. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 269-282. |
[8] | Jiasi Luo, Wanting Sun, Ranxi Duan, Wenqing Yang, K.C. Chan, Fuzeng Ren, Xu-Sheng Yang. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance [J]. J. Mater. Sci. Technol., 2022, 110(0): 43-56. |
[9] | Yafeng Yang, Kang Geng, Shaofu Li, Michael Bermingham, R.D.K. Misra. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 110(0): 84-95. |
[10] | Zifan Hao, Guoliang Xie, Xinhua Liu, Qing Tan, Rui Wang. The precipitation behaviours and strengthening mechanism of a Cu-0.4 wt% Sc alloy [J]. J. Mater. Sci. Technol., 2022, 98(0): 1-13. |
[11] | Dong Wang, Xu Lu, Meichao Lin, Di Wan, Zhiming Li, Jianying He, Roy Johnsen. Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation [J]. J. Mater. Sci. Technol., 2022, 98(0): 118-122. |
[12] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[13] | Yanxin Qiao, Xinyi Wang, Lanlan Yang, Xiaojing Wang, Jian Chen, Zhengbin Wang, Huiling Zhou, Jiasheng Zou, Fuhui Wang. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107(0): 197-206. |
[14] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
[15] | Xianglong Zhou, Tao Yuan, Tianyu Ma. Shortened processing duration of high-performance Sm-Co-Fe-Cu-Zr magnets by stress-aging [J]. J. Mater. Sci. Technol., 2022, 106(0): 70-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||