J. Mater. Sci. Technol. ›› 2022, Vol. 117: 23-35.DOI: 10.1016/j.jmst.2021.10.048
• Research Article • Previous Articles Next Articles
Q. Zhang, F.W. Tang(), Z. Zhao, Z.R. Nie, X.Y. Song(
)
Received:
2021-07-29
Revised:
2021-10-16
Accepted:
2021-10-27
Published:
2022-02-02
Online:
2022-08-01
Contact:
F.W. Tang,X.Y. Song
About author:
xysong@bjut.edu.cn (X.Y. Song).Q. Zhang, F.W. Tang, Z. Zhao, Z.R. Nie, X.Y. Song. Surface modification of tungsten oxide by oxygen vacancies for hydrogen adsorption[J]. J. Mater. Sci. Technol., 2022, 117: 23-35.
Fig. 1. Diagrams for crystal and surface structures of monoclinic WO3: (a) WO3 crystal supercell; (b) W—O-terminated (0 0 1)WO3 surface; (c) O-terminated (0 0 1)WO3 surface; (d) (1 1 0)WO3 surface. The green and blue balls represent O and W atoms, respectively.
Fig. 2. The tendency of H atoms (represented by red balls) moving to stable adsorption sites on O-terminated (0 0 1)WO3 surface, observed from perpendicular and parallel directions of the surface.
Fig. 3. Adsorption Gibbs free energy, Mulliken bond population and bond lengths after H adsorption on (0 0 1)WO3 surface: (a) H adsorption on O-terminated (0 0 1)WO3 surface; (b) H adsorption on W—O-terminated (0 0 1)WO3 surface.
Fig. 4. Charge population after H adsorption on (0 0 1)WO3 surface: (a) H adsorption on O-terminated (0 0 1)WO3 surface; (b) H adsorption on W—O-terminated (0 0 1)WO3 surface.
Fig. 5. Typical adsorption sites on W—O-terminated (0 0 1)WO3 surface: (a) on top of oxygen atom (represented as O-top site); (b) on top of the tungsten atom, (represented as W-top site); (c) at bridge position between the tungsten and oxygen atoms (represented as bridge site); (d) at geometric central position of four oxygen atoms (represented as central site). The insets show different adsorption sites viewed from the top of the structure.
Fig. 6. The local charge density distributions on W—O-terminated (0 0 1)WO3 surface after H adsorption at different positions: (a) O-top; (b) W-top; (c) bridge; (d) central.
Fig. 9. Adsorption Gibbs free energy, Mulliken bond population and bond lengths on (1 1 0)WO3 surface with oxygen vacancies locating at different positions.
Fig. 10. Typical (1 1 0)WO3 surfaces with different distributions of oxygen vacancies: (a) oxygen vacancy on outermost surface (represented as vacancy-1) and on internal surface (represented as vacancy-2); (b) symmetric mode (represented as vacancies-1,S) and adjacent mode (represented as vacancies-1,A).
Fig. 13. Charge density distribution on (1 1 0)WO3 surface with different distribution of oxygen vacancies after H adsorption on O-top site: (a) no vacancy on surface; (b) oxygen vacancy on the outermost surface.
Fig. 14. PDOS of (1 1 0)WO3 surface after H adsorption on O-top site: (a) (1 1 0)WO3 surfaces with different distributions of oxygen vacancies; (b) surface with no oxygen vacancy; (c) oxygen vacancy on the outermost surface; (d) oxygen vacancy on internal surface.
[1] |
C.J. Dong, R.J. Zhao, L.J. Yao, Y. Ran, X. Zhang, Y.D. Wang, J. Alloy. Compd. 820 (2020) 153194.
DOI URL |
[2] |
Y.H. Yang, R.H. Xie, H. Li, C.J. Liu, W.H. Liu, F.Q. Zhan, Trans. Nonferr. Met. Soc. China 26 (2016) 2390-2396.
DOI URL |
[3] |
M. Bourdin, I. Mjejri, A. Rougier, C. Labrugere, T. Cardinal, Y. Messaddeq, M. Gaudon, J. Alloy. Compd. 823 (2020) 153690.
DOI URL |
[4] |
M.B. Zheng, H. Tang, Q. Hu, L.L. Li, J. Xu, H. Pang, Adv. Funct. Mater. 28 (2018) 1707500.
DOI URL |
[5] |
J. Kukkola, J. Mäklin, N. Halonen, T. Kyllönen, G. Tóth, M. Szabó, A. Shchukarev, J. Mikkola, H. Jantunen, K. Kordás, Actuators B Chem. 153 (2011) 293-300.
DOI URL |
[6] |
H.Q. Zuo, J.X. Tao, H. Shi, J. He, Z.Y. Zhou, C. Zhang, Acta Biomater. 80 (2018) 296-307.
DOI URL |
[7] |
A. Boudiba, C. Zhang, C. Bittencourt, P. Umek, M.G. Olivier, R. Snyders, M. De- bliquy, Procedia Eng. 47 (2012) 228-231.
DOI URL |
[8] |
C.S. Rout, M. Hegde, C.N.R. Rao, Sensor. Actuators B Chem. 128 (2008) 488-493.
DOI URL |
[9] |
T. Samerjai, N. Tamaekong, C. Liewhiran, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuators B Chem. 157 (2011) 290-297.
DOI URL |
[10] |
D.V. DAO, K. Shibuya, T.T. Bui, S. Sugiyama, Procedia Eng. 25 (2011) 1149-1152.
DOI URL |
[11] |
T. Hübert, L. Boon-Brett, G. Black, U. Banach, Sens. Actuators B Chem. 157 (2011) 329-352.
DOI URL |
[12] |
W.J. Buttner, M.B. Post, R. Burgess, C. Rivkin, Int. J. Hydrog. Energy 36 (2011) 2462-2470.
DOI URL |
[13] |
S.J. Ippolito, S. Kandasamy, K. Kalantar-zadeh, W. Wlodarski, Sens. Actuators B Chem. 108 (2005) 154-158.
DOI URL |
[14] |
H. Nakagawa, N. Yamamoto, S. Okazaki, T. Chinzei, S. Asakura, Sens. Actuators B Chem. 93 (2003) 468-474.
DOI URL |
[15] |
B. Liu, D.P. Cai, Y. Liu, D.D. Wang, L.L. Wang, Y.R. Wang, H. Li, Q.H. Li, T.H. Wang, Sens. Actuators B Chem. 193 (2014) 28-34.
DOI URL |
[16] |
Y.X. Qin, D.Y. Hua, M. Liu, J. Alloy. Compd. 587 (2014) 227-233.
DOI URL |
[17] |
F. Li, Q.X. Qin, N. Zhang, C. Chen, L. Sun, X. Liu, Y. Chen, C.N. Li, S.P. Ruan, Sens. Actuators B Chem. 244 (2017) 837-848.
DOI URL |
[18] |
J.C. Lim, C. Jin, M.S. Choi, M.Y. Kim, S. Kim, S.M. Choi, S.H. Baek, K.H. Lee, H.S. Kim, Ceram. Int. 47 (2021) 20956-20964.
DOI URL |
[19] | F.H. Tian, C. Gong, R. Wu, Z.Z. Liu, Mater. Today Chem. 9 (2018) 28-33. |
[20] |
P.S. Venkatesh, P. Dharmaraj, V. Purushothaman, V. Ramakrishnan, K. Je- ganathan, Sens. Actuators B Chem. 212 (2015) 10-17.
DOI URL |
[21] |
G. Pacchioni, ChemPhysChem 4 (2003) 1041-1047.
DOI URL |
[22] |
C. Zhang, G.F. Liu, X. Geng, K.K. Wu, M. Debliquy, Sens. Actuators A Phys. 309 (2020) 112026.
DOI URL |
[23] |
X.W. Shen, C.Z. Huang, Y.F. Li, Talanta 72 (2007) 1432-1437.
DOI URL |
[24] |
G.S. Zakharova, Y.L. Liu, A.N. Enyashin, X. Yang, J. Zhou, W. Jin, W. Chen, Sens. Actuators B Chem. 256 (2018) 1021-1029.
DOI URL |
[25] | J.W. Christian, The Theory of Transformations in Metals and Alloys, Newnes, 2002. |
[26] |
JJ.M. Órfão, AIChE J. 53 (2007) 2905-2915.
DOI URL |
[27] |
D.D. Wang, D.X. Han, L. Liu, L. Niu, J. Mater. Chem. A 4 (2016) 14416-14422.
DOI URL |
[28] |
V. Nagarajan, R. Chandiramouli, Superlattices Microstruct. 78 (2015) 22-39.
DOI URL |
[29] |
B. Liu, Y.M. Xu, K. Li, H. Wang, L. Gao, Y.Y. Luo, G.T. Duan, ACS Appl. Mater. Interfaces 11 (2019) 16838-16846.
DOI URL |
[30] |
W.Q. Lai, K. Zhang, P.H. Shao, L.M. Yang, L. Ding, S.G. Pavlostathis, H. Shi, L.Z. Zou, D.H. Liang, X.B. Luo, J. Hazard. Mater. 379 (2019) 120791.
DOI URL |
[31] |
L.H. Zhao, F.H. Tian, X.B. Wang, W.W. Zhao, A.P. Fu, Y.Y. Shen, S.G. Chen, S.Q. Yu, Comput. Mater. Sci. 79 (2013) 691-697.
DOI URL |
[32] |
X.B. Wang, F.H. Tian, W.W. Zhao, A.P. Fu, L.H. Zhao, Comput. Mater. Sci. 68 (2013) 218-221.
DOI URL |
[33] | P.M. Oliver, S.C. Parker, R.G. Egdell, F.H. Jones, J. Chem. Soc. 92 (1996) 2049-2056. |
[34] |
P.J. Jiang, Y.Y. Xiao, W.J. Liu, X.B. Yu, Results Phys. 12 (2019) 896-902.
DOI URL |
[35] |
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter 14 (2002) 2717-2744.
DOI URL |
[36] |
M.Y. Wang, W. Wang, M. Ji, X.L. Cheng, Appl. Surf. Sci. 439 (2018) 350-363.
DOI URL |
[37] |
P. Basumatary, D. Konwar, Y.S. Yoon, Appl. Catal. B Environ. 267 (2020) 118724.
DOI URL |
[38] |
Y.H. Dai, Math. Program. 138 (2013) 501-530.
DOI URL |
[39] |
B.K. Zhang, J. Zhou, S.R. Elliott, Z.M. Sun, J. Mater. Chem. A 8 (2020) 23947-23954.
DOI URL |
[40] |
J.G. Howalt, T. Bligaard, J. Rossmeisl, T. Vegge, Phys. Chem. Chem. Phys. 15 (2013) 7785-7795.
DOI PMID |
[41] |
B.K. Zhang, J. Zhou, Z.L. Guo, Q. Peng, Z.M. Sun, Appl. Surf. Sci. 500 (2020) 144248.
DOI URL |
[42] |
B. Grosjean, C. Pean, A. Siria, L. Bocquet, R. Vuilleumier, M.L. Bocquet, J. Phys. Chem. Lett. 7 (2016) 4695-4700.
PMID |
[43] |
A. Jalil, Z.W. Zhuo, Z.T. Sun, F. Wu, C. Wang, X.J. Wu, J. Mater. Chem. A 8 (2020) 1307-1314.
DOI URL |
[44] |
Z. Meng, B.K. Zhang, Q. Peng, Y.D. Yu, J. Zhou, Z.M. Sun, Appl. Surf. Sci. 562 (2021) 150151.
DOI URL |
[45] |
G.X. Tian, Y. Zhang, T.S. Yang, Acta Phys. Chim. Sin. 28 (2012) 1063-1069.
DOI URL |
[46] |
P.G. Jiang, Y.Y. Xiao, W.J. Liu, X.B. Yu, Results Phys. 12 (2019) 896-902.
DOI URL |
[47] |
Q. Liu, F.J. Wang, H.X. Lin, Y.Y. Xie, N. Tong, J.J. Lin, X.Y. Zhang, Z.Z. Zhang, X.X. Wang, Catal. Sci. Technol. 8 (2018) 4399-4406.
DOI URL |
[48] |
H.J. Liu, H. Fu, Y.C. Liu, X.Y. Chen, K.F. Yu, L.W. Wang, Chemosphere 272 (2021) 129534.
DOI URL |
[49] |
Z.M. Wang, H. Wang, X.X. Wang, X. Chen, Y. Yu, W.X. Dai, X.Z. Fu, M. Anpo, J. Phys. Chem. C 125 (2021) 3242-3255.
DOI URL |
[50] |
W.W. Yu, Z.G. Shen, F. Peng, Y. Lu, M.Y. Ge, X.L. Fu, Y. Sun, X. Chen, N. Dai, RSC Adv. 9 (2019) 7723-7728.
DOI URL |
[51] |
H. Wu, Z. Ma, Z.X. Lin, H.Z. Song, S.C. Yan, Y. Shi, Nanomaterials 9 (2019) 388.
DOI URL |
[1] | Yongqiang Ren, Xiuyan Li, Yinan Wang, Qinghua Gong, Shaonan Gu, Tingting Gao, Xuefeng Sun, Guowei Zhou. Self-template formation of porous yolk-shell structure Mo-doped NiCo2O4 toward enhanced lithium storage performance as anode material [J]. J. Mater. Sci. Technol., 2022, 102(0): 186-194. |
[2] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
[3] | Linggen Kong, Inna Karatchevtseva, Tao Wei, Nicholas Scales. Synthesis of hierarchical mesoporous Ln2Ti2O7 (Ln = Y, Tb-Yb) pyrochlores and uranyl sorption properties [J]. J. Mater. Sci. Technol., 2022, 113(0): 22-32. |
[4] | Muhammad Ismail, Umesh Chand, Chandreswar Mahata, Jamel Nebhen, Sungjun Kim. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 96(0): 94-102. |
[5] | Jie Xiong, Hong-Yan Zeng, Sheng Xu, Jin-Feng Peng, Fang-Yuan Liu, Li-Hui Wang. Enhancing the intrinsic properties of flower-like BiOI by S-doping toward excellent photocatalytic performances [J]. J. Mater. Sci. Technol., 2022, 118(0): 181-189. |
[6] | Sepideh Pourhashem, Abdolvahab Seif, Farhad Saba, Elham Garmroudi Nezhad, Xiaohong Ji, Ziyang Zhou, Xiaofan Zhai, Majid Mirzaee, Jizhou Duan, Alimorad Rashidi, Baorong Hou. Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies [J]. J. Mater. Sci. Technol., 2022, 118(0): 73-113. |
[7] | Chunyang Gao, Yixiao Jiang, Tingting Yao, Ang Tao, Xuexi Yan, Xiang Li, Chunlin Chen, Xiu-Liang Ma, Hengqiang Ye. Atomic origin of magnetic coupling of antiphase boundaries in magnetite thin films [J]. J. Mater. Sci. Technol., 2022, 107(0): 92-99. |
[8] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[9] | Yang Zhao, Yameng Zhu, Jinpeng Zhu, Hailong Wang, Zhuang Ma, Lihong Gao, Yanbo Liu, Kaijun Yang, Yongchun Shu, Jilin He. Atomic-resolution investigation of structural transformation caused by oxygen vacancy in La0.9Sr0.1TiO3+δ titanate layer perovskite ceramics [J]. J. Mater. Sci. Technol., 2022, 104(0): 172-182. |
[10] | Daxian Zuo, Cuiping Wang, Jiajia Han, Qinghao Han, Yanan Hu, Junwei Wu, Huajun Qiu, Qian Zhang, Xingjun Liu. One-step synthesis of novel core-shell bimetallic hexacyanoferrate for high performance sodium-storage cathode [J]. J. Mater. Sci. Technol., 2022, 114(0): 180-190. |
[11] | Changyan Chen, Ting Jiang, Jianhua Hou, Tingting Zhang, Geshan Zhang, Yongcai Zhang, Xiaozhi Wang. Oxygen vacancies induced narrow band gap of BiOCl for efficient visible-light catalytic performance from double radicals [J]. J. Mater. Sci. Technol., 2022, 114(0): 240-248. |
[12] | Huinan Zhao, Xinyi Guan, Feng Zhang, Yajing Huang, Dehua Xia, Lingling Hu, Xiaoyuan Ji, Ran Yin, Chun He. Rational design of a bismuth oxyiodide (Bi/BiO1-xI) catalyst for synergistic photothermal and photocatalytic inactivation of pathogenic bacteria in water [J]. J. Mater. Sci. Technol., 2022, 100(0): 110-119. |
[13] | Hae Jin Park, Hee Jin Lee, Tae Kyung Kim, Sung Hwan Hong, Wei-Min Wang, Taek Jib Choi, Ki Buem Kim. Formation of photo-reactive heterostructure from a multicomponent amorphous alloy with atomically random distribution [J]. J. Mater. Sci. Technol., 2022, 109(0): 245-253. |
[14] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[15] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||