J. Mater. Sci. Technol. ›› 2022, Vol. 111: 236-244.DOI: 10.1016/j.jmst.2021.10.018
• Research Article • Previous Articles Next Articles
Wei Luoa, Yi Liua,*(), Chuangye Wanga, Dan Zhaoa, Xiaoyan Yuana, Jianfeng Zhua, Lei Wanga, Shouwu Guoa,b(
)
Received:
2021-08-29
Revised:
2021-09-28
Accepted:
2021-10-04
Published:
2021-12-12
Online:
2021-12-12
Contact:
Yi Liu,Shouwu Guo
About author:
swguo@sjtu.edu.cn (S. Guo).Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption[J]. J. Mater. Sci. Technol., 2022, 111: 236-244.
Samples | Molar ratio of raw materials |
---|---|
S100 | 1.60 V: 0.20 Ti: 0.20 Cr: 1.20 Al: 1 Carbon fiber: 4 NaCl: 4 KCl |
S90 | 1.44 V: 0.18 Ti: 0.18 Cr: 1.08 Al: 1 Carbon fiber: 4 NaCl: 4 KCl |
S80 | 1.28 V: 0.16 Ti: 0.16 Cr: 0.96 Al: 1 Carbon fiber: 4 NaCl: 4 KCl |
S70 | 1.12 V: 0.14 Ti: 0.14 Cr: 0.84 Al: 1 Carbon fiber: 4 NaCl: 4 KCl |
S60 | 0.96 V: 0.12 Ti: 0.12 Cr: 0.72 Al: 1 Carbon fiber: 4 NaCl: 4 KCl |
Table 1. The label and composition of the synthesized samples.
Samples | Molar ratio of raw materials |
---|---|
S100 | 1.60 V: 0.20 Ti: 0.20 Cr: 1.20 Al: 1 Carbon fiber: 4 NaCl: 4 KCl |
S90 | 1.44 V: 0.18 Ti: 0.18 Cr: 1.08 Al: 1 Carbon fiber: 4 NaCl: 4 KCl |
S80 | 1.28 V: 0.16 Ti: 0.16 Cr: 0.96 Al: 1 Carbon fiber: 4 NaCl: 4 KCl |
S70 | 1.12 V: 0.14 Ti: 0.14 Cr: 0.84 Al: 1 Carbon fiber: 4 NaCl: 4 KCl |
S60 | 0.96 V: 0.12 Ti: 0.12 Cr: 0.72 Al: 1 Carbon fiber: 4 NaCl: 4 KCl |
Fig. 2. (a) XRD patterns and (b) Raman spectra of as-prepared (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods. (c) SEM images and (d) EDX of S100 microrods. The inset in (c) are the corresponding images with higher magnification.
Fig. 3. (a-e) The backscattered electron detector (BSE) images on cross-sections of S100, S90, S80, S70, and S60, respectively. (f) SEM-EDX elemental mapping of S80.
Fig. 5. 2D color maps of calculated RL for (a) S100, (b) S90, (c) S80, (d) S70, and (e) S60. (f) the minimum RL versus optimal EAB of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods.
Materials | Matrix | RLmin (dB) | dmin (mm) | Optimal EAB (RL<-10 dB, GHz) | Ref. |
---|---|---|---|---|---|
Ti3AlC2 | Paraffin wax | -31 | 2.8 | 4.2 | [ |
(Cr2/3Ti1/3)3AlC2 | Paraffin wax | -36.5 | 2.30 | 3 | [ |
Ti3SiC2 | Paraffin wax | -33.83 | 2.00 | 4.1 | [ |
Ti3SiC2 | Polyimide | -48.6 | 2.9 | 3.8 | [ |
Ti3SiC2 | Glass | -47.7 | 1.4 | 4.2 | [ |
Cr2AlC | Paraffin wax | -25.09 | 2.00 | 2.2 | [ |
Ti3SiC2/Co3Fe7 | Paraffin wax | -31.2 | 2.40 | 3.1 | [ |
Nickel/Ti3SiC2 | Epoxy resin | -41.2 | 2.20 | 3.8 | [ |
Ni0.5Zn0.5Fe2O4/Ti3SiC2 | Epoxy resin | -38.6 | 1.2 | 5.3 | [ |
S80 | Paraffin wax | -63.26 | 2.40 | 5.28 | This work |
Table 2. Comparison of microwave absorption performance of S80/paraffin with those of MAX phases or similar composites reported in the literature.
Materials | Matrix | RLmin (dB) | dmin (mm) | Optimal EAB (RL<-10 dB, GHz) | Ref. |
---|---|---|---|---|---|
Ti3AlC2 | Paraffin wax | -31 | 2.8 | 4.2 | [ |
(Cr2/3Ti1/3)3AlC2 | Paraffin wax | -36.5 | 2.30 | 3 | [ |
Ti3SiC2 | Paraffin wax | -33.83 | 2.00 | 4.1 | [ |
Ti3SiC2 | Polyimide | -48.6 | 2.9 | 3.8 | [ |
Ti3SiC2 | Glass | -47.7 | 1.4 | 4.2 | [ |
Cr2AlC | Paraffin wax | -25.09 | 2.00 | 2.2 | [ |
Ti3SiC2/Co3Fe7 | Paraffin wax | -31.2 | 2.40 | 3.1 | [ |
Nickel/Ti3SiC2 | Epoxy resin | -41.2 | 2.20 | 3.8 | [ |
Ni0.5Zn0.5Fe2O4/Ti3SiC2 | Epoxy resin | -38.6 | 1.2 | 5.3 | [ |
S80 | Paraffin wax | -63.26 | 2.40 | 5.28 | This work |
Fig. 8. Total charge density maps of (V0.8Ti0.1Cr0.1)2AlC: (a) M layer, (b) A layer, (c) C layer, (d) in the (110) plane; and (e) difference charge density in the (110) plane.
[1] | B. Wang, Q. Wu, Y. Fu, T. Liu, J. Mater. Sci.Technol. 86 (2021) 91-109. |
[2] | W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao, G. Ji, J. Mater. Sci.Technol. 67 (2021) 265-272. |
[3] |
Y. Bi, M. Ma, Z. Liao, Z. Tong, Y. Chen, R. Wang, Y. Ma, G. Wu, J. Colloid Interface Sci. 605 (2022) 483-492.
DOI URL |
[4] | M. Li, X. Fan, H. Xu, F. Ye, J. Xue, X. Li, L. Cheng, J. Mater. Sci.Technol. 59 (2020) 164-172. |
[5] |
W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen, G. Ji, Nano-Micro Lett 13 (2021) 102.
DOI URL |
[6] |
B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Carbon 65 (2013) 124-139.
DOI URL |
[7] | P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Adv. Funct. Mater. (2021) 2102812. |
[8] |
Y. Guo, X. Zhang, X. Feng, X. Jian, L. Zhang, L. Deng, Composites, Part B 155 (2018) 282-287.
DOI URL |
[9] |
X. Jian, W. Tian, J. Li, L. Deng, Z. Zhou, L. Zhang, H. Lu, L. Yin, N. Mahmood, ACS Appl. Mater. Interfaces 11 (2019) 15869-15880.
DOI URL |
[10] |
I.M. Chirica, A.G. Mirea, Ş. Neaţu, M. Florea, M.W. Barsoum, F. Neaţu, J. Mater. Chem. A 9 (2021) 19589.
DOI URL |
[11] |
Z. Zhang, X. Duan, D. Jia, Y. Zhou, S. Zwaag, J. Eur. Ceram. Soc. 41 (2021) 3851-3878.
DOI URL |
[12] | Q. Xu, Y.C. Zhou, H.M. Zhang, A.N. Jiang, Q.Z. Tao, J. Lu, J. Rosen, Y.H. Niu, S. Grasso, C.F. Hu, J. Adv. Ceram. 9 (2020) 4 81-4 92. |
[13] |
J. Gonzalez-Julian, J. Am. Ceram. Soc. 104 (2021) 659-690.
DOI URL |
[14] |
A.Ph. Ilyushchanka, S.G. Baray, A.I. Letsko, T.L. Talako, Y.D. Manoila, Y. Janu, D. Chaudhary, V.S. Chauhan, L. Saini, M.K. Patr, Surf. Coat. Technol. 405 (2021) 126631.
DOI URL |
[15] | Y. Shi, F. Luo, Y. Liu, W. Zhou, X. Zhang, Int. J. Appl. Ceram. Technol. 12 (2015) E172-E177. |
[16] |
Y. Liu, J. Si, Y. Li, F. Luo, X. Su, J. Xu, J. Wang, X. He, Y. Shi, J. Electron. Mater. 46 (2017) 4981-4988.
DOI URL |
[17] |
Y. Liu, X. Su, F. Luo, J. Xu, J. Wang, X. He, Y. Qu, J. Electron. Mater. 48 (2019) 2364-2372.
DOI |
[18] |
H. Xiang, Y. Xing, F. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, Y. Zhou, J. Adv. Ceram. 10 (2021) 385-441.
DOI URL |
[19] | M. Li, Q. Huang, J. Inorg. Mater. 35 (2020) 1-7. |
[20] |
M. Sokol, V. Natu, S. Kota, M.W. Barsoum, Trends Chem 1 (2019) 210-223.
DOI URL |
[21] |
W. Luo, Y. Liu, C. Wang, D. Zhao, X. Yuan, L. Wang, J. Zhu, S. Guo, X. Kong, J. Mater. Chem. C 9 (2021) 7697-7705.
DOI URL |
[22] |
M. Qin, H. Liang, X. Zhao, H. Wu, J. Colloid Interface Sci. 566 (2020) 347-356.
DOI URL |
[23] |
Y. Zhao, Y. Zhang, C. Yang, L. Cheng, Carbon 171 (2021) 474-483.
DOI URL |
[24] |
Y. Qiao, Z. Yao, X. Wang, X. Zhang, C. Bai, Q. Li, K. Chen, Z. Li, T. Zheng, Mater. Des. 188 (2020) 108427.
DOI URL |
[25] |
D. Zhang, T. Liu, S. Liang, J. Chai, X. Yang, J. Cheng, H. Wang, M. Cao, Integr. Ferroelectr. 200 (2019) 108-116.
DOI URL |
[26] | B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding, R. Zhang, R. Che, Small (2020) 2003502. |
[27] |
J. Ma, X. Wang, W. Cao, C. Han, H. Yang, J. Yuan, M. Cao, Chem. Eng. J. 339 (2018) 487-498.
DOI URL |
[28] | H. Zhang, T. Hu, X. Wang, Y. Zhou, J. Mater. Sci.Technol. 38 (2020) 205-220. |
[29] |
A. Dash, R. Vaβen, O. Guillon, J. Gonzalez-Julian, Nat. Mater. 18 (2019) 465-470.
DOI URL |
[30] |
T. Galvin, N.C. Hyatt, W.M. Rainforth, I.M. Reaney, D. Shepherd, J. Eur. Ceram. Soc. 38 (2018) 4585-4589.
DOI URL |
[31] |
B. Wang, A. Zhou, Q. Hu, L. Wang, Int. J. Appl. Ceram. Technol. 14 (2017) 873-879.
DOI URL |
[32] |
D. Xiao, J. Zhu, F. Wang, Y. Tang, J. Nanosci. Nanotechnol. 15 (2015) 7341-7345.
PMID |
[33] | H. Liu, Y. Wang, L. Yang, R. Liu, C. Zeng, J. Mater. Sci.Technol. 37 (2020) 77-84. |
[34] |
A. Dash, Y.J. Sohn, R. Vaβen, O. Guillon, J. Gonzalez-Julian, J. Eur. Ceram. Soc. 39 (2019) 3651-3659.
DOI URL |
[35] |
X. Liu, N. Fechler, M. Antonietti, Chem. Soc. Rev. 42 (2013) 8237-8265.
DOI URL |
[36] |
W. Luo, Y. Liu, F. Li, J. Huo, D. Zhao, J. Zhu, S. Guo, Appl. Surf. Sci. 523 (2020) 146387.
DOI URL |
[37] |
A. Champagne, L. Shi, T. Ouisse, B. Hackens, J.C. Charlier, Phys. Rev. B 97 (2018) 115439.
DOI URL |
[38] |
Y. Liu, F. Luo, W. Zhou, D. Zhu, J. Alloys Compd. 576 (2013) 43-47.
DOI URL |
[39] |
H. Wang, D. Zhu, W. Zhou, F. Luo, RSC Adv. 5 (2015) 86656-86664.
DOI URL |
[40] |
Q. Wen, W. Zhou, Y. Wang, Y. Qing, F. Luo, D. Zhu, Z. Huang, J. Mater. Sci. 52 (2017) 832-842.
DOI URL |
[41] |
Y. Zhang, J. Wen, L. Zhang, H. Lu, Y. Guo, X. Ma, M. Zhang, J. Yin, L. Dai, X. Jian, L. Yin, J. Xie, D. Liang, L. Deng, J. Alloys Compd. 860 (2021) 157896.
DOI URL |
[42] |
Y. Liu, X. Su, X. He, J. Xu, J. Wang, Y. Qu, C. Fu, Y. Wang, J. Alloys Compd. 779 (2019) 286-292.
DOI URL |
[43] |
Y. Liu, F. Luo, J. Su, W. Zhou, D. Zhu, J. Magn. Magn. Mater. 365 (2014) 126-131.
DOI URL |
[44] |
J. He, L. Deng, H. Luo, L. He, D. Shan, S. Yan, S. Huang, J. Magn. Magn. Mater. 473 (2019) 184-189.
DOI URL |
[45] |
B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang, B. Fan, X. Guo, R. Zhang, Carbon 176 (2021) 411-420.
DOI URL |
[46] |
M. Ma, W. Li, Z. Tong, Y. Ma, Y. Bi, Z. Liao, J. Zhou, G. Wu, M. Li, J. Yue, X. Song, X. Zhang, J. Colloid Interface Sci. 578 (2020) 58-68.
DOI URL |
[47] |
B. Scheibe, K. Tadyszak, M. Jarek, N. Michalak, M. Kempi ′nski, M. Lewandowski, B. Pepli ′nska, K Chybczy ′nska, Appl. Surf. Sci. 479 (2019) 216-224.
DOI |
[48] | H. Zhang, B. Zhao, H. Xiang, F.Z. Dai, Z. Zhang, Y. Zhou, J. Am. Ceram. Soc.(2020) 1-12. |
[49] | H. Chen, B. Zhao, Z. Zhao, H. Xiang, F.Z. Dai, J. Liu, Y. Zhou, J. Mater. Sci.Tech- nol. 47 (2020) 216-222. |
[50] |
Z. Liao, M. Ma, Y. Bi, Z. Tong, K.L. Chung, Z. Li, Y. Ma, B. Gao, Z. Cao, R. Sun, X. Zhong, J. Colloid Interface Sci. 606 (2022) 709-718.
DOI URL |
[51] |
N. Haddad, E. Garcia-Caurel, L. Hultman, M.W. Barsoum, G. Hug, J. Appl. Phys. 104 (2008) 023531.
DOI URL |
[52] |
W. Xu, G.S. Wang, P.G. Yin, Carbon 139 (2018) 759-767.
DOI URL |
[53] |
S. Wang, D. Li, Y. Zhou, L. Jiang, ACS Nano 14 (2020) 8634-8645.
DOI URL |
[1] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[2] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[3] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[4] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[5] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
[6] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[7] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
[8] | Huifang Pang, Yuping Duan, Xuhao Dai, Lingxi Huang, Xuan Yang, Tuo Zhang, Xiaoji Liu. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption [J]. J. Mater. Sci. Technol., 2021, 88(0): 203-214. |
[9] | Sai Gao, Guozheng Zhang, Yi Wang, Xiaopeng Han, Ying Huang, Panbo Liu. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 88(0): 56-65. |
[10] | Fengyuan Wang, Ping Xu, Ning Shi, Liru Cui, Yahui Wang, Dawei Liu, Honghong Zhao, Xijiang Han, Yunchen Du. Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution [J]. J. Mater. Sci. Technol., 2021, 93(0): 7-16. |
[11] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[12] | Yanchun Zhou, Biao Zhao, Heng Chen, Huimin Xiang, Fu-Zi Dai, Shijiang Wu, Wei Xu. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2021, 74(0): 105-118. |
[13] | Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 256-263. |
[14] | Baolei Wang, Qian Wu, Yonggang Fu, Tong Liu. A review on carbon/magnetic metal composites for microwave absorption [J]. J. Mater. Sci. Technol., 2021, 86(0): 91-109. |
[15] | Minghang Li, Xiaomeng Fan, Hailong Xu, Fang Ye, Jimei Xue, Xiaoqiang Li, Laifei Cheng. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance [J]. J. Mater. Sci. Technol., 2020, 59(0): 164-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||