J. Mater. Sci. Technol. ›› 2022, Vol. 109: 209-220.DOI: 10.1016/j.jmst.2021.09.006
• Research Article • Previous Articles Next Articles
Jing Wu, Meng Li, Chuanchuan Lin, Pengfei Gao, Rui Zhang, Xuan Li, Jixi Zhang, Kaiyong Cai*
Received:2021-06-07
Revised:2021-08-27
Accepted:2021-09-22
Published:2022-05-20
Online:2021-10-08
Contact:
Kaiyong Cai
About author:* College of Bioengineering, Chongqing University, Chongqing 400044, China. E-mail address: kaiyong_cai@cqu.edu.cn (K. Cai).Jing Wu, Meng Li, Chuanchuan Lin, Pengfei Gao, Rui Zhang, Xuan Li, Jixi Zhang, Kaiyong Cai. Moderated crevice corrosion susceptibility of Ti6Al4V implant material due to albumin-corrosion interaction[J]. J. Mater. Sci. Technol., 2022, 109: 209-220.
| Sample | Ecorr (mV) | icorr (A/cm2) | ba (mV/dec) | -bc (mV/dec) | i0.4V (A/cm2) | i1.4V (A/cm2) |
|---|---|---|---|---|---|---|
| PBS | -404 ± 5 | (1.76 ± 0.23) × 10-7 | 183.05 ± 1.46 | 184.26 ± 24.29 | (2.59± 0.45) × 10-6 | (3.26± 0.08) × 10-6 |
| PBS-Crevice | -558 ± 36 | (1.64 ± 0.72) × 10-7 | 190.66 ± 1.09 | 173.22 ± 28.60 | (5.51± 0.82) × 10-6 | (1.59± 0.36) × 10-5 |
| PBS-4% BSA-Crevice | -735 ± 80 | (4.13 ± 0.60) × 10-8 | 201.41 ± 10.24 | 138.66 ± 60.55 | (3.56± 0.25) × 10-6 | (3.90± 0.79) × 10-6 |
Table 1. Electrochemical parameters obtained from potentiodynamic polarization curves of the Ti6Al4V with artificial crevice in the PBS and PBS with 4% BSA.
| Sample | Ecorr (mV) | icorr (A/cm2) | ba (mV/dec) | -bc (mV/dec) | i0.4V (A/cm2) | i1.4V (A/cm2) |
|---|---|---|---|---|---|---|
| PBS | -404 ± 5 | (1.76 ± 0.23) × 10-7 | 183.05 ± 1.46 | 184.26 ± 24.29 | (2.59± 0.45) × 10-6 | (3.26± 0.08) × 10-6 |
| PBS-Crevice | -558 ± 36 | (1.64 ± 0.72) × 10-7 | 190.66 ± 1.09 | 173.22 ± 28.60 | (5.51± 0.82) × 10-6 | (1.59± 0.36) × 10-5 |
| PBS-4% BSA-Crevice | -735 ± 80 | (4.13 ± 0.60) × 10-8 | 201.41 ± 10.24 | 138.66 ± 60.55 | (3.56± 0.25) × 10-6 | (3.90± 0.79) × 10-6 |
| Immersion time (h) | Rs (Ω cm2) | Rf (Ω cm2) | Qf | Rt (Ω cm2) | Qdl | Zw | χ2 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Q (F/s(1-α) cm2) | α | Q (F/s(1-α) cm2) | α | Rw (Ω cm2) | p | τ (s) | |||||
| PBS | |||||||||||
| 0 | 16.24 | 8.65 × 104 | 1.08 × 10-4 | 0.89 | 1.80 × 104 | 1.86 × 10-4 | 0.88 | - | - | - | 8.72 × 10-4 |
| 24 | 15.35 | 4.04 × 105 | 5.28 × 10-5 | 0.92 | 5.61 × 106 | 3.34 × 10-6 | 0.78 | - | - | - | 3.32 × 10-4 |
| 96 | 17.22 | 1.72 × 106 | 3.20 × 10-5 | 0.93 | 5.62 × 106 | 3.48 × 10-6 | 0.75 | - | - | - | 7.10 × 10-4 |
| 120 | 20.13 | 1.55 × 104 | 3.37 × 10-5 | 0.92 | - | - | - | 1.52 × 104 | 0.40 | 36.91 | 6.49 × 10-4 |
| 216 | 14.90 | 2.88 × 104 | 3.48 × 10-5 | 0.92 | - | - | - | 2.74 × 104 | 0.41 | 38.04 | 2.45 × 10-4 |
| PBS-4% BSA | |||||||||||
| 0 | 15.73 | 1.74 × 104 | 2.56 × 10-4 | 0.81 | 1.26 × 105 | 2.03 × 10-4 | 0.96 | - | - | - | 1.25 × 10-3 |
| 24 | 18.11 | 3.72 × 104 | 1.46 × 10-4 | 0.83 | 8.88 × 105 | 1.41 × 10-4 | 0.98 | - | - | - | 8.80 × 10-4 |
| 72 | 15.99 | 1.94 × 104 | 1.55 × 10-4 | 0.83 | 6.17 × 105 | 1.48 × 10-4 | 0.96 | - | - | - | 8.24 × 10-4 |
| 120 | 15.72 | 1.06 × 104 | 1.78 × 10-4 | 0.83 | 6.61 × 105 | 1.36 × 10-4 | 0.93 | - | - | - | 1.02 × 10-3 |
| 216 | 15.57 | 3.35 × 103 | 2.00 × 10-4 | 0.93 | 9.91 × 105 | 1.16 × 10-4 | 0.86 | - | - | - | 1.19 × 10-3 |
Table 2. Fitted parameters for EIS data recorded during the immersion tests in PBS and PBS with 4% BSA of Ti6Al4V alloy with artificial crevice.
| Immersion time (h) | Rs (Ω cm2) | Rf (Ω cm2) | Qf | Rt (Ω cm2) | Qdl | Zw | χ2 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Q (F/s(1-α) cm2) | α | Q (F/s(1-α) cm2) | α | Rw (Ω cm2) | p | τ (s) | |||||
| PBS | |||||||||||
| 0 | 16.24 | 8.65 × 104 | 1.08 × 10-4 | 0.89 | 1.80 × 104 | 1.86 × 10-4 | 0.88 | - | - | - | 8.72 × 10-4 |
| 24 | 15.35 | 4.04 × 105 | 5.28 × 10-5 | 0.92 | 5.61 × 106 | 3.34 × 10-6 | 0.78 | - | - | - | 3.32 × 10-4 |
| 96 | 17.22 | 1.72 × 106 | 3.20 × 10-5 | 0.93 | 5.62 × 106 | 3.48 × 10-6 | 0.75 | - | - | - | 7.10 × 10-4 |
| 120 | 20.13 | 1.55 × 104 | 3.37 × 10-5 | 0.92 | - | - | - | 1.52 × 104 | 0.40 | 36.91 | 6.49 × 10-4 |
| 216 | 14.90 | 2.88 × 104 | 3.48 × 10-5 | 0.92 | - | - | - | 2.74 × 104 | 0.41 | 38.04 | 2.45 × 10-4 |
| PBS-4% BSA | |||||||||||
| 0 | 15.73 | 1.74 × 104 | 2.56 × 10-4 | 0.81 | 1.26 × 105 | 2.03 × 10-4 | 0.96 | - | - | - | 1.25 × 10-3 |
| 24 | 18.11 | 3.72 × 104 | 1.46 × 10-4 | 0.83 | 8.88 × 105 | 1.41 × 10-4 | 0.98 | - | - | - | 8.80 × 10-4 |
| 72 | 15.99 | 1.94 × 104 | 1.55 × 10-4 | 0.83 | 6.17 × 105 | 1.48 × 10-4 | 0.96 | - | - | - | 8.24 × 10-4 |
| 120 | 15.72 | 1.06 × 104 | 1.78 × 10-4 | 0.83 | 6.61 × 105 | 1.36 × 10-4 | 0.93 | - | - | - | 1.02 × 10-3 |
| 216 | 15.57 | 3.35 × 103 | 2.00 × 10-4 | 0.93 | 9.91 × 105 | 1.16 × 10-4 | 0.86 | - | - | - | 1.19 × 10-3 |
Fig. 3. EIS plots of Ti6Al4V alloy with artificial crevice under potentiostatic polarizations in PBS and PBS with 4% BSA. (A) Nyquist plots recorded at cathodic potentials; (B) Nyquist plots recorded at anodic potentials.
Fig. 4. EIS plots of Ti6Al4V alloy with artificial crevice immersed in (A) PBS and (B) PBS with 4% BSA for 216 h. (a) Nyquist plots; (b) Bode impedance magnitude plots; (c) Bode phase angle plots.
Fig. 6. AFM images of Ti6Al4V with artificial crevice after potentiostatic polarization at 1.6 VSCE for 1000 s. (A) After polarization in PBS; (B) after polarization in PBS with 4% BSA.
Fig. 7. Surface morphologies of Ti6Al4V with artificial crevice after immersed in PBS and PBS 4%BSA for 216 h. (A) Interior of artificial crevice in PBS; (B) Exterior of artificial crevice in PBS; (C) Interior of artificial crevice in PBS with BSA; (D) Exterior of artificial crevice in PBS with BSA.
Fig. 8. (A) Adsorption behavior of BSA-FITC on Ti6Al4V with artificial crevice after immersed for 5 d (a) Schematic illustration of artificial crevice free of epoxy resin; (b) CLSM image of BSA distribution. (B) XPS spectra for surface films of Ti6Al4V immersed in PBS and PBS with 4% BSA for 24 h.
Fig. 9. Schematic illustration of mechanism for interaction between BSA adsorption and crevice corrosion of Ti6Al4V implants with artificial crevice in PBS with 4% BSA. (A) Typical crevice of implants; (B) Crevice corrosion model; (C) Early stage of interaction process; (D) Final stage of interaction process.
| [1] |
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54 (2009) 397-425.
DOI URL |
| [2] |
K. Cai, J. Bossert, K.D. Jandt, Colloids Surf. B Biointerfaces 49 (2006) 136-144.
DOI URL |
| [3] |
Y. Li, J. Xu, Electrochim. Acta 233 (2017) 151-166.
DOI URL |
| [4] |
J. Wang, S. Zhang, Z. Sun, H. Wang, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (2019) 2336-2344.
DOI URL |
| [5] |
D. Cai, X. Zhao, L. Yang, R. Wang, G. Qin, D.-f. Chen, E. Zhang, J. Mater. Sci. Technol. 81 (2021) 13-25.
DOI URL |
| [6] |
S.L.d. Assis, S. Wolynec, I. Costa, Electrochim. Acta 51 (2006) 1815-1819.
DOI URL |
| [7] |
J. Li, Y. Bai, Z. Fan, S. Li, Y. Hao, R. Yang, Y. Gao, J. Mater. Sci. Technol. 34 (2018) 1660-1670.
DOI |
| [8] | B. Su, B. Wang, L. Luo, L. Wang, Y. Su, F. Wang, Y. Xu, B. Han, H. Huang, J. Guo, H. Fu, The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: effects of HCl concentration and temperature, J. Mater. Sci. Technol. 74 (2021) 143-154. |
| [9] | D.R. Bijukumar, A. Segu, J.C.M. Souza, X. Li, M. Barba, L.G. Mercuri, J.J. J, M.T. Mathew, Systemic and local toxicity of metal debris released from hip prostheses: a review of experimental approaches, Nanomedicine 14 (2018) 951-963. |
| [10] |
M. Huber, G. Reinisch, G. Trettenhahn, K. Zweymuller, F. Lintner, Acta Biomater 5 (2009) 172-180.
DOI URL |
| [11] |
X. Yue, L. Zhang, X. He, D. Kong, Y. Hua, J. Mater. Sci. Technol. 93 (2021) 205-220.
DOI URL |
| [12] |
J. Zhang, N. Kong, Y. Shi, J. Niu, L. Mao, H. Li, M. Xiong, G. Yuan, Corros. Sci. 85 (2014) 477-481.
DOI URL |
| [13] | Y. Liu, J.L. Gilbert, Effect of simulated inflammatory conditions and potential on dissolution and surface oxide of CoCrMo alloy: in situ electrochemical atomic force microscopy study, Electrochim. Acta 262 (2018) 252-263. |
| [14] |
D. Liu, H. Yang, J. Li, J. Li, Y. Dong, C. Yang, Y. Jin, L. Yassir, Z. Li, D. Hernandez, D. Xu, F. Wang, J.A. Smith, J. Mater. Sci. Technol. 79 (2021) 101-108.
DOI URL |
| [15] |
Z. Li, J. Wang, Y. Dong, D. Xu, X. Zhang, J. Wu, T. Gu, F. Wang, J. Mater. Sci. Technol. 71 (2021) 177-185 4 V.
DOI URL |
| [16] |
S. Karimi, T. Nickchi, A. Alfantazi, Corros. Sci. 53 (2011) 3262-3272.
DOI URL |
| [17] |
G.T. Burstein, C. Liu, Corros. Sci. 49 (2007) 4296-4306.
DOI URL |
| [18] |
M.A. Siddiqui, I. Ullah, H. Liu, S. Zhang, L. Ren, K. Yang, J. Mater. Sci. Technol. 80 (2021) 117-127.
DOI URL |
| [19] |
J. Wang, L. Cui, Y. Ren, Y. Zou, J. Ma, C. Wang, Z. Zheng, X. Chen, R. Zeng, Y. Zheng, J. Mater. Sci. Technol. 47 (2020) 52-67.
DOI URL |
| [20] |
C. Valero Vidal, A. Igual Muñoz, Electrochim. Acta 55 (2010) 8445-8452.
DOI URL |
| [21] | C. Valero-Vidal, A. Igual-Muñoz, C.O.A. Olsson, S. Mischler, Adsorption of BSA on passivated CoCrMo PVD alloy: an EQCM and XPS investigation, J. Elec-trochem. Soc. 161 (2014) C294-C301. |
| [22] | A. Impergre, B. Ter-Ovanessian, C. Der Loughian, B. Normand, Systemic strategy for biocompatibility assessments of metallic biomaterials: representativeness of cell culture medium, Electrochim. Acta 283 (2018) 1017-1027. |
| [23] |
I. Frateur, L. Lartundo-Rojas, C. Méthivier, A. Galtayries, P. Marcus, Electrochim. Acta 51 (2006) 1550-1557.
DOI URL |
| [24] |
S. Karimi, A.M. Alfantazi, J. Electrochem. Soc. 160 (2013) C206-C214.
DOI URL |
| [25] |
Y. Zhang, O. Addison, F. Yu, B.C.R. Troconis, J.R. Scully, A.J. Davenport, Sci. Rep. 8 (2018) 3185.
DOI PMID |
| [26] |
J.L. Wang, R.L. Liu, T. Majumdar, S.A. Mantri, V.A. Ravi, R. Banerjee, N. Birbilis, Acta Biomater 54 (2017) 469-478.
DOI PMID |
| [27] |
Y.S. Hedberg, M. Znidarsic, G. Herting, I. Milosev, I. Odnevall Wallinder, J. Biomed. Mater. Res. B Appl. Biomater. 107 (2019) 858-867.
DOI URL |
| [28] |
F. Yu, O. Addison, A.J. Davenport, Acta Biomater 26 (2015) 355-365.
DOI URL |
| [29] | J. Luo, M. Tamaddon, C. Yan, S. Ma, X. Wang, F. Zhou, C. Liu, J. Mater. Sci. Tech-nol. 49 (2020) 47-55. |
| [30] |
B. Chen, H. Wu, R. Yi, W. Wang, H. Xu, S. Zhang, H. Peng, J. Ma, H. Jiang, R. Zan, S. Qiao, Y. Sun, P. Hou, P. Han, J. Ni, X. Zhang, J. Mater. Sci. Technol. 52 (2020) 83-88.
DOI URL |
| [31] |
O. Addison, A.J. Davenport, R.J. Newport, S. Kalra, M. Monir, J.F. Mosselmans, D. Proops, R.A. Martin, J. R. Soc. Interface 9 (2012) 3161-3164.
PMID |
| [32] |
I.P.S. Gill, J. Webb, K. Sloan, R.J. Beaver, J. Bone Joint Surg. 94-B (2012) 895-900.
DOI URL |
| [33] |
D.J. Lombardo, M.P. Siljander, C.K. Gehrke, D.D. Moore, M.S. Karadsheh, E.A. Baker, J. Arthroplasty 34 (2019) 1273-1278.
DOI PMID |
| [34] | A.P. Morrell, H. Floyd, W.M. JF, L.M. Grover, H. Castillo-Michel, E.T. Davis, J.E. Parker, R.A. Martin, O. Addison, Improving our understanding of metal im-plant failures: multiscale chemical imaging of exogenous metals in ex-vivo bi-ological tissues, Acta Biomater 98 (2019) 284-293. |
| [35] |
J. Schoon, B. Hesse, A. Rakow, M.J. Ort, A. Lagrange, D. Jacobi, A. Winter, K. Huesker, S. Reinke, M. Cotte, R. Tucoulou, U. Marx, C. Perka, G.N. Duda, S. Geissler, Adv. Sci. 7 (2020) 2000412.
DOI URL |
| [36] |
J.L. Gilbert, C.A. Buckley, J.J. Jacobs, J. Biomed. Mater. Res. 27 (1993) 1533-1544.
DOI URL |
| [37] | Y. Liu, D. Zhu, D. Pierre, J.L. Gilbert, Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: potential and cycles to initiation, Acta Biomater 97 (2019) 565-577. |
| [38] |
S. Balachandran, Z. Zachariah, A. Fischer, D. Mayweg, M.A. Wimmer, D. Raabe, M. Herbig, Adv. Sci. 7 (2020) 1903008.
DOI URL |
| [39] | Z. Wang, Y. Yan, Y. Wang, Y. Su, L. Qiao, Lifecycle of cobalt-based alloy for arti-ficial joints: from bulk material to nanoparticles and ions due to bio-tribocor-rosion, J. Mater. Sci. Technol. 46 (2020) 98-106. |
| [40] |
V. Swaminathan, J.L. Gilbert, Biomaterials 33 (2012) 5487-5503.
DOI URL |
| [41] |
Z. Wang, Y. Yan, Y. Su, L. Qiao, Colloids Surf. B Biointerfaces 145 (2016) 176-184.
DOI URL |
| [42] |
Y. Yan, H. Yang, Y. Su, L. Qiao, Electrochem. Commun. 64 (2016) 61-64.
DOI URL |
| [43] | S. Hussenbocus, D. Kosuge, L.B. Solomon, D.W. Howie, R.H. Oskouei, Biomed. Res. Int. 2015 (2015) 758123. |
| [44] | U. Kragh-Hansen, in: M. Otagiri, V.T.G. Chuang (Eds.), Albumin in Medicine: Pathological and Clinical Applications, Springer Singapore, Singapore, 2016, pp. 1-24. |
| [45] |
W. Wang, F. Mohammadi, A. Alfantazi, Corros. Sci. 57 (2012) 11-21.
DOI URL |
| [46] | Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant De-vices, ASTM International, West Conshohocken, PA, 2019. |
| [47] |
E. Liamas, O.R.T. Thomas, A.I. Muñoz, Z.J. Zhang, RSC Adv 9 (2019) 34265-34273.
DOI URL |
| [48] |
S.N. Magonov, V. Elings, M.H. Whangbo, Surf. Sci. 375 (1997) L385-L391.
DOI URL |
| [49] |
E. Nagao, J.A. Dvorak, Biophys. J. 76 (1999) 3289-3297.
PMID |
| [50] |
Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li, K. Liu, Y. Lin, M. Liu, G. Li, C.Y. Su, Nat. Commun. 12 (2021) 1369.
DOI URL |
| [51] |
R. Venugopalan, J.J. Weimer, M.A. George, L.C. Lucas, Biomaterials 21 (2000) 1669-1677.
PMID |
| [52] |
C.D. Walkey, W.C. Chan, Chem. Soc. Rev. 41 (2012) 2780-2799.
DOI PMID |
| [53] |
Y. Yan, H. Yang, Y. Su, L. Qiao, Sci. Rep. 5 (2015) 18403.
DOI PMID |
| [54] |
Z. Zhou, W. Li, T. He, P. Yu, G. Tan, C. Ning, J. Mater. Sci. Technol. 32 (2016) 950-955.
DOI URL |
| [55] | M. Wilhelmi, C. Muller, C. Ziegler, M. Kopnarski, BSA adsorption on titanium: toF-SIMS investigation of the surface coverage as a function of protein concen-tration and pH-value, Anal. Bioanal. Chem. 400 (2011) 697-701. |
| [56] |
P. Silva-Bermudez, S.E. Rodil, S. Muhl, Appl. Surf. Sci. 258 (2011) 1711-1718.
DOI URL |
| [57] | R.K. Dayal, in: H.S. Khatak, B. Raj (Eds.), Corrosion of Austenitic Stainless Steels, Woodhead Publishing, Cambridge, 2002, pp. 106-116. |
| [58] |
A. Salis, M. Bostrom, L. Medda, F. Cugia, B. Barse, D.F. Parsons, B.W. Ninham, M. Monduzzi, Langmuir 27 (2011) 11597-11604.
DOI URL |
| [1] | Cong Wu, Qinyang Zhao, Shixing Huang, Yongqing Zhao, Lei Lei, Junqiang Ren, Qiaoyan Sun, Lian Zhou. Deformation mechanisms in a β-quenched Ti-5321 alloy: In-situ investigation related to slip activity, orientation evolution and stress induced martensite [J]. J. Mater. Sci. Technol., 2022, 112(0): 36-48. |
| [2] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
| [3] | Riguang Cheng, Yanxun Guan, Yumei Luo, Chenchen Zhang, Sheng Wei, Mengmeng Zhao, Qi Lin, Hao Li, Shiyou Zheng, Federico Rosei, Lixian Sun, Fen Xu, Hongge Pan. Guanine-assisted N-doped ordered mesoporous carbons as efficient capacity decaying suppression materials for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 101(0): 155-164. |
| [4] | MengCheng Deng, Shang Sui, Bo Yao, Liang Ma, Xin Lin, Jing Chen. Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique [J]. J. Mater. Sci. Technol., 2022, 101(0): 308-320. |
| [5] | Jie Sun, Chuangwei Liu, Wenhan Kong, Jie Liu, Liangyu Ma, Song Li, Yuanhong Xu. Rational design of FeS2 microspheres as high-performance catalyst for electrooxidation of hydrazine [J]. J. Mater. Sci. Technol., 2022, 110(0): 161-166. |
| [6] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
| [7] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
| [8] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
| [9] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
| [10] | Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109(0): 282-296. |
| [11] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
| [12] | X. Li, X.N. Wang, K. Liu, G.H. Cao, M.B. Li, Z.S. Zhu, S.J. Wu. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength [J]. J. Mater. Sci. Technol., 2022, 107(0): 227-242. |
| [13] | Gwanghyo Choi, Won Seok Choi, Yoon Sun Lee, Dahye Kim, Ji Hyun Sung, Seungjun An, Chang-Seok Oh, Amine Hattal, Madjid Djemai, Brigitte Bacroix, Guy Dirras, Pyuck-Pa Choi. Decomposition behavior of yttria-stabilized zirconia and its effect on directed energy deposited Ti-based composite material [J]. J. Mater. Sci. Technol., 2022, 112(0): 138-150. |
| [14] | Duoduo Wang, Qunbo Fan, Xingwang Cheng, Yu Zhou, Ran Shi, Yan Qian, Le Wang, Xinjie Zhu, Haichao Gong, Kai Chen, Jingjiu Yuan, Liu Yang. Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model [J]. J. Mater. Sci. Technol., 2022, 111(0): 76-87. |
| [15] | Zhigang Lu, Nan Huang, Zhaofeng Zhai, Bin Chen, Lusheng Liu, Haozhe Song, Ziyao Yuan, Chuyan Zhang, Bing Yang, Xin Jiang. Integration of 3D interconnected porous microstructure and high electrochemical property for boron-doped diamond by facile strategy [J]. J. Mater. Sci. Technol., 2022, 105(0): 26-35. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
