J. Mater. Sci. Technol. ›› 2022, Vol. 108: 37-45.DOI: 10.1016/j.jmst.2021.08.051
• Research Article • Previous Articles Next Articles
Tong Gaoa,b, Zhengyu Zhanga, Yixing Lia,*(), Yujuan Songa, Huawei Ronga,b, Xuefeng Zhanga,b,*(
)
Received:
2021-07-13
Revised:
2021-08-12
Accepted:
2021-08-12
Published:
2021-10-24
Online:
2021-10-24
Contact:
Yixing Li,Xuefeng Zhang
About author:
zhangxf@atm.neu.edu.cn (X. Zhang).Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties[J]. J. Mater. Sci. Technol., 2022, 108: 37-45.
Fig. 2. Phase component characterizations (XRD) of different MWCNTs: (a) CoO on MWCNTs after reduction reaction, (b) Co3O4 on MWCNTs after oxidation reaction, (c) DE-MWCNTs after removing Co3O4 by H2SO4.
Fig. 3. Microstructure characterizations (TEM) of different MWCNTs: (a-d) CoO on MWCNTs after reduction reaction, (e-h) Co3O4 on MWCNTs after oxidation reaction, (i-l) DE-MWCNTs after removing Co3O4 by H2SO4.
Fig. 4. High-resolution TEM images of DE-MWCNTs, which is employed to illustrate the nanoscale structural defects creating via the solid-state reactions.
Fig. 5. Raman spectra of MWCNTs with different raw material weight ratio (1:1, 1:5, and 1:10). (a)-(c) CoO-MWCNTs, (d)-(f) Co3O4-MWCNTs, (g)-(i) DE-MWCNTs.
Fig. 6. Electromagnetic parameters of original-MWCNTs, CoO-MWCNTs, Co3O4-MWCNTs, and DE-MWCNTs: (a) real part of the relatively complex permittivity, (b) imaginary part of the relatively complex permittivity, (c) dielectric loss factor plots, (d) real part of the relatively complex permeability, (e) imaginary part of the relatively complex permeability, (f) magnetic loss factor plots.
Fig. 7. Plots of ε′ vs B0 (B0=ε′′/f) of four samples: (a) original- MWCNTs, (b) CoO-MWCNTs, (c) Co3O4-MWCNTs, (d) DE-MWCNTs, (e) k values of four samples.
Fig. 8. Three-dimensional reflection loss mapping, corresponding contour plots, and microwave absorbing performances of original-MWCNTs, CoO-MWCNTs, Co3O4-MWCNTs, and DE-MWCNTs: (a-d) 3D plots of microwave absorption (RL), (e-h) microwave absorption (RL) versus frequency, (i-j) effective bandwidth and minimum RL at different thicknesses.
Sample | Electromagnetic wave absorption properties RL (min) | EAB | f (min) |
---|---|---|---|
DE-MWCNTs | -54.6 | 14.6 | 4.5 |
Fe2O3/Fe3O4/ MWCNTs | -44.1 | 3.3 | 10.4 |
ZnO@MWCNTs@NiFe2O4 | -45.5 | 5.4 | 12.4 |
MWCNTs/AlN | -47.34 | 3.28 | 9.12 |
CoFe2O4/C/PANI | -51.81 | 8.88 | 12.4 |
C@Fe2O3@MWCNTs | -49.9 | 15 | 10 |
RGO/MWCNTs/CeO2 | -59.3 | 3.2 | 4.6 |
Ni@C-ZIF | -86.8 | 7.4 | 13.2 |
NiSe/C | -59.7 | 4.67 | 7.89 |
Table 1. Comparison of electromagnetic wave absorption performances.
Sample | Electromagnetic wave absorption properties RL (min) | EAB | f (min) |
---|---|---|---|
DE-MWCNTs | -54.6 | 14.6 | 4.5 |
Fe2O3/Fe3O4/ MWCNTs | -44.1 | 3.3 | 10.4 |
ZnO@MWCNTs@NiFe2O4 | -45.5 | 5.4 | 12.4 |
MWCNTs/AlN | -47.34 | 3.28 | 9.12 |
CoFe2O4/C/PANI | -51.81 | 8.88 | 12.4 |
C@Fe2O3@MWCNTs | -49.9 | 15 | 10 |
RGO/MWCNTs/CeO2 | -59.3 | 3.2 | 4.6 |
Ni@C-ZIF | -86.8 | 7.4 | 13.2 |
NiSe/C | -59.7 | 4.67 | 7.89 |
Fig. 9. Electrical conductivity and impedance matching calculations of original-MWCNTs, CoO-MWCNTs, Co3O4-MWCNTs, and DE-MWCNTs: (a) I-V curve and R-V curve, (b) attenuation constant α, (c)-(f) impedance matching degree Δ dependence of frequency.
[1] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
[2] |
J. Qiao, X. Zhang, C. Liu, L.F. Lyu, Z. Wang, L.L. Wu, W. Liu, F.L. Wang, J. R. Liu, Compos. Part B-Eng. 200 (2020) 108343.
DOI URL |
[3] |
S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, P.B. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
[4] |
G.H. He, Y.P. Duan, H.F. Pang, Nano-Micro Lett. 12 (2020) 156-171.
DOI URL |
[5] |
H.J. Wu, M. Qin, L.M. Zhang, Compos. Part B-Eng. 182 (2019) 107620.
DOI URL |
[6] |
C.H. Wang, L.S. Zong, Y.X. Pan, N. Li, Q. Liu, J.Y. Wang, X.G. Jian, Compos. Part B- Eng. 223 (2021) 109114.
DOI URL |
[7] |
J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng, J.C. Fan, L.X. Chen, J.W. Gu, Compos. Commun. 22 (2020) 100486.
DOI URL |
[8] |
H.F. Pang, Y.P. Duan, X.H. Dai, L.X. Huang, X. Yang, T. Zhang, X.J. Liu, J. Mater. Sci. Technol. 88 (2021) 203-214.
DOI URL |
[9] |
H.B. Zhao, J.B. Cheng, J.Y. Zhu, Y.Z. Wang, J. Mater. Chem. C 7 (2019) 441-448.
DOI URL |
[10] |
W.X. Li, Y.Y. Liu, F. Guo, Y.E. Du, Y.Q. Chen, Appl. Surf. Sci. 562 (2021) 150212.
DOI URL |
[11] |
L.Y. Zhu, X.J. Zeng, M. Chen, R.H. Yu, RSC Adv. 7 (2017) 26 801-26 808.
DOI URL |
[12] | P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu, Z.L. Ma, Y.Q. Guo, J.W. Gu, Nano-Mi- cro Lett. 13 (2021) 91. |
[13] |
M.H. Al-Saleh, U. Sundararaj, J. Phys. D: Appl. Phys. 46 (2013) 035304.
DOI URL |
[14] |
X.C. Zhang, Z.B. Zhao, J. Xu, Q.Y. Ouyang, C.L. Zhu, X.L. Zhang, X.T. Zhang, Y.J. Chen, Carbon 177 (2021) 216-225.
DOI URL |
[15] |
L. Wang, Z.L. Ma, Y.L. Zhang, L.X. Chen, D.P. Cao, J.W. Gu, SusMat. 1 (2021) 413-431.
DOI URL |
[16] | F. Zhang, Z.R. Jia, Z. Wang, C.H. Zhang, B.B. Wang, B.H. Xu, X.H. Liu, G.L. Wu, Mater. Today Phys. 20 (2021) 100475. |
[17] |
S.K. Ghosh, T.K. Das, S. Ghosh, S. Remanan, K. Nath, P. Das, N. Ch. Das, Compos. Sci. Technol. 210 (2021) 108800.
DOI URL |
[18] |
S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh, N.C. Das, Polym. Bull. 77 (2020) 2923-2943.
DOI URL |
[19] |
J. Li, P. Miao, K.J. Chen, J.W. Cao, J. Liang, Y.S. Tang, J. Kong, Compos. Part B-Eng. 182 (2020) 107613.
DOI URL |
[20] |
N. Li, G.W. Huang, Y.Q. Li, H.W. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, ACS Appl. Mater. Interfaces 9 (2017) 2973-2983.
DOI URL |
[21] |
J. Qiu, T.T. Qiu, Carbon 81 (2015) 20-28.
DOI URL |
[22] |
R. Ravindren, S. Mondal, K. Nath, N. Ch. Das, Compos. A Appl. Sci. Manuf. 118 (2019) 75-89.
DOI URL |
[23] |
C. Zhang, G.Y. Chen, R.X. Zhang, Z.C. Wu, C.Y. Xu, H. Man, R.C. Che, Carbon 178 (2021) 310-319.
DOI URL |
[24] | M.H. Li, X.M. Fan, H.L. Xu, F. Ye, J.M. Xue, X.Q. Li, L.F. Cheng, J. Mater. Sci. Tech-nol. 59 (2020) 164-172. |
[25] |
K.C. Zhang, X.B. Gao, Q. Zhang, H. Chen, X.F. Chen, J. Magn. Magn. Mater. 452 (2018) 55-63.
DOI URL |
[26] |
R.W. Shu, G.Y. Zhang, X. Wang, X. Gao, M. Wang, Y. Gan, J.J. Shi, J. He, Chem. Eng. J. 337 (2018) 242-255.
DOI URL |
[27] |
H.Q. Guo, L. Wang, W.B. You, L.T. Yang, X. Li, G.Y. Chen, Z.C. Wu, X. Qian, M. Wang, R.C. Che, ACS Appl. Mater. Interfaces 12 (2020) 16831-16840.
DOI URL |
[28] |
H.H. Hu, T. Gao, X.N. Zhao, J. Zhang, Y.H. Zhang, G.W. Qin, X.F. Zhang, Carbon 153 (2019) 330-336.
DOI URL |
[29] |
Y. Liu, Y.C. Zhang, X. Wang, Z.M. Wang, W.C. Lai, X.J. Zhang, X.Y. Liu, J. Phys. Chem. C 122 (2018) 6357-6367.
DOI URL |
[30] |
M.Q. Ning, J.B. Li, B. Kuang, C.Z. Wang, D.Z. Su, Y.J. Zhao, H.B. Jin, M.S. Cao, Appl. Surf. Sci. 447 (2018) 244-253.
DOI URL |
[31] |
X.H. Li, L. Wang, W.B. You, X. Li, L.T. Yang, J. Zhang, M. Wang, R.C. Che, Nanoscale 11 (2019) 22539-22549.
DOI URL |
[32] |
B. Zhong, C.J. Wang, G.W. Wen, Y.L. Yu, L. Xia, Compos. Part B-Eng. 132 (2018) 141-150.
DOI URL |
[33] |
D.H. Kim, K. Waki, J. Nanosci, J. Nanosci. Nanotechno. 10 (2010) 2375.
DOI URL |
[34] |
Y.C. Chiang, W.H. Lin, Y.C. Chang, Appl. Surf. Sci. 257 (2011) 2401-2410.
DOI URL |
[35] |
G.P. Glaspell, P.W. Jagodzinski, A. Manivannan, J. Phys. Chem. B 108 (2004) 9604-9607.
DOI URL |
[36] |
S.C. Petitto, E.M. Marsh, G.A. Carson, M.A. Langell, J. Mol. Catal. A Chem. 281 (2008) 49-58.
DOI URL |
[37] |
Y.J. Song, H.W. Rong, Y.X. Li, W.W. Liu, X.F. Zhang, J. Mater. Sci. 55 (2020) 13871-13880.
DOI URL |
[38] |
Y. Zheng, Y.J. Song, T. Gao, S.Y. Yan, H.H. Hua, F. Cao, Y.P. Duan, X.F. Zhang, ACS Appl. Mater. Interfaces 12 (2020) 40802-40814.
DOI URL |
[39] |
Y.P. Zhao, H. Zhang, X. Yang, H. Huang, G.L. Zhao, T.Z. Cong, X.Q. Zuo, Z. Fan, S.T. Yang, L.J. Pan, Carbon 171 (2021) 395-408.
DOI URL |
[40] |
A. Abouelsayed, B. Anis, S. Hassaballa, A.S.G. Khalil, U.M. Rashed, K.A. Eid, E.A. Ashkar, W.E. Hotaby, Mater. Chem. Phys. 189 (2017) 127-135.
DOI URL |
[41] |
X.F. Zhou, B.B. Wang, Z.R. Jia, X.D. Zhang, X.H. Liu, K.K. Wang, B.H. Xu, G.L. Wu, J. Colloid Interface Sci. 582 (2021) 515-525.
DOI URL |
[42] |
X.L. Chen, K.L. Zhong, T. Shi, X.L. Meng, G.L. Wu, Y. Lu, Synth. Met. 248 (2019) 59-67.
DOI URL |
[43] |
C.L. Hu, H.P. Liu, Y.H. Zhang, M. Zhang, J.Y. Yu, X.G. Liu, X.F. Zhang, J. Mater. Sci. 54 (2019) 2417-2426.
DOI URL |
[44] |
Z. Zafar, Z.H. Ni, X. Wu, Z.X. Shi, H.Y. Nan, J. Bai, L.T. Sun, Carbon 61 (2013) 57-62.
DOI URL |
[45] |
B. Quan, X. Liang, G. Ji, J. Ma, P. Ouyang, H. Gong, G. Xu, Y. Du, ACS Appl. Mater. Interfaces 9 (2017) 9964.
DOI URL |
[46] |
Y.L. Zhou, J. Muhammad, X.F. Zhang, D.X. Wang, Y.P. Duan, X.L. Dong, Z. D. Zhang, RSC Adv. 8 (2018) 6397-6405.
DOI URL |
[47] |
X.F. Zhou, Z.R. Jia, A.L. Feng, K.K. Wang, X.H. Liu, L. Chen, H.J. Cao, G.L. Wu, Compos. Commun. 21 (2020) 100404.
DOI URL |
[48] |
H. Zhang, Z. Jia, A. Feng, Z. Zhou, L. Chen, C. Zhang, X. Liu, G. Wu, Compos. Part-B Eng. 199 (2020) 108261.
DOI URL |
[49] |
L. Long, E.Q. Yang, X.S. Qi, R. Xie, Z.C. Bai, S.J. Qin, W. Zhong, J. Mater. Chem. C 7 (2019) 8975-8981.
DOI |
[50] | Y.X. Li, X.Y. Chen, Q. Wei, W.W. Liu, Y.H. Zhang, G.W. Qin, Z. Shi, X. F. Zhang, Sci. Bull. 8 (2019) 623-630. |
[51] |
B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang, G. Ji, Y. Guo, L. Zheng, Z.J. Xu, Adv. Funct. Mater. 29 (2019) 1901236.
DOI URL |
[52] | Z.G. Gao, B.H. Xu, M.L. Ma, A.L. Feng, Y. Zhang, X.H. Liu, Z.R. Jia, G.L. Wu, Com- pos. Part-B Eng. 179 (2019) 107417. |
[53] |
H. Rong, Z. Zhang, Y. Li, X. Zhang, L. Li, Compos. Commun. 12 (2019) 123-127.
DOI URL |
[54] |
Y. Feng, D. Li, Y. Bai, A. Hua, D.S. Pan, Y. Li, Y. Wang, J. He, Z.H. Wang, Y.J. Zhang, W. Liu, Z.D. Zhang, J. Electron. Mater. 48 (2018) 1429-1435.
DOI URL |
[55] |
Z.F. Zhang, P.F. Guan, X.L. Dong, Appl. Phys. Lett. 97 (2010) 033107.
DOI URL |
[56] |
D. Min, J. Mater. Sci. Mater. Electron. 30 (2019) 17119-17127.
DOI URL |
[57] |
L.N. Huang, X.F. Liu, R.H. Yu, Prog. Nat. Sci. 28 (2018) 288-295.
DOI URL |
[58] |
W. Ma, R. Yang, H. Xie, T.M. Wang, J. Mater. Sci. 56 (2021) 9807-9823.
DOI URL |
[59] |
T.Q. Hou, Z.R. Jia, A.L. Feng, Z.H. Zhou, X.H. Liu, H.L. Lv, G.L. Wu, J. Mater. Sci. Technol. 68 (2021) 61-69.
DOI URL |
[60] |
M. Zhou, W.J. Zhao, Q.M. Yan, H.Q. Fu, J. Alloys Compd. 877 (2021) 160300.
DOI URL |
[61] |
Y. Wu, R.W. Shu, J.B. Zhang, Z.L. Wan, J.J. Shi, Y. Liu, G.M. Zhao, M.D. Zheng, J. Alloys Compd. 819 (2020) 152944.
DOI URL |
[62] |
L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang, R.C. Che, Carbon 155 (2019) 298-308.
DOI |
[63] |
J. Yan, Y. Huang, Y.H. Yan, L. Ding, P.B. Liu, ACS Appl. Mater. Interfaces 11 (2019) 40781-40792.
DOI URL |
[64] |
Q.N. Mao, J. Liu, Q. Cao, D.X. Yang, J.S. Zhong, G.Y. Sun, J.H. Zheng, L.F. Kuang, B.Y. Guo, Q.W. Liu, X.Z. Hao, Z.G. Ji, T. Yang, X.G. Liu, Ceram. Int. 46 (2020) 13752-13761.
DOI URL |
[65] |
L. Quan, F.X. Qin, D. Estevez, H. Wang, H.X. Peng, Carbon 125 (2017) 630-639.
DOI URL |
[66] |
Y. Zhou, N. Wang, J. Muhammad, D. Wang, Y. Duan, X. Zhang, X. Dong, Z. Zhang, Carbon 148 (2019) 204-213.
DOI URL |
[1] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[2] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[3] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[4] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
[5] | Jing Li, Fan Yang, Yunzhu Du, Xiyang Cai, Qiaodan Hu, Junliang Zhang. Bi0.15Sr0.85Co0.8Fe0.2O3-δ perovskite: A novel bifunctional oxygen electrocatalyst with superior durability in alkaline media [J]. J. Mater. Sci. Technol., 2022, 108(0): 158-163. |
[6] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[7] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[8] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
[9] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[10] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
[11] | Fengyuan Wang, Ping Xu, Ning Shi, Liru Cui, Yahui Wang, Dawei Liu, Honghong Zhao, Xijiang Han, Yunchen Du. Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution [J]. J. Mater. Sci. Technol., 2021, 93(0): 7-16. |
[12] | Zongyi Ma, Gang Li, Xinglai Zhang, Jing Li, Cai Zhang, Yonghui Ma, Jian Zhang, Bing Leng, Natalia Usoltseva, Vladimir An, Baodan Liu. High-performance and broadband photodetection of bicrystalline (GaN)1-x(ZnO)x solid solution nanowires via crystal defect engineering [J]. J. Mater. Sci. Technol., 2021, 85(0): 255-262. |
[13] | Huifang Pang, Yuping Duan, Xuhao Dai, Lingxi Huang, Xuan Yang, Tuo Zhang, Xiaoji Liu. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption [J]. J. Mater. Sci. Technol., 2021, 88(0): 203-214. |
[14] | Sai Gao, Guozheng Zhang, Yi Wang, Xiaopeng Han, Ying Huang, Panbo Liu. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 88(0): 56-65. |
[15] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||