J. Mater. Sci. Technol. ›› 2022, Vol. 102: 105-114.DOI: 10.1016/j.jmst.2021.06.033
• Research Article • Previous Articles Next Articles
Shucai Zhanga, Jiangtao Yua, Huabing Lia,*(), Zhouhua Jianga,*(
), Yifeng Gengb, Hao Fenga, Binbin Zhanga, Hongchun Zhua
Received:
2021-05-09
Revised:
2021-05-29
Accepted:
2021-06-14
Published:
2021-08-27
Online:
2021-08-27
Contact:
Huabing Li,Zhouhua Jiang
About author:
jiangzh@smm.neu.edu.cn (Z. Jiang).1These authors contributed equally to this work.
Shucai Zhang, Jiangtao Yu, Huabing Li, Zhouhua Jiang, Yifeng Geng, Hao Feng, Binbin Zhang, Hongchun Zhu. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654[J]. J. Mater. Sci. Technol., 2022, 102: 105-114.
Steel | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | Ce | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ce0 | 0.012 | 0.38 | 2.93 | 0.005 | 0.0041 | 24.45 | 22.53 | 7.32 | 0.47 | 0.50 | - | bal. |
Ce0.035 | 0.013 | 0.37 | 2.96 | 0.005 | 0.0020 | 24.47 | 22.51 | 7.34 | 0.48 | 0.50 | 0.035 | bal. |
Ce0.089 | 0.012 | 0.40 | 2.95 | 0.005 | 0.0019 | 24.46 | 22.54 | 7.35 | 0.47 | 0.50 | 0.089 | bal. |
Table 1 Chemical compositions (wt.%) of these three S32654 ingots used in this study.
Steel | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | Ce | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ce0 | 0.012 | 0.38 | 2.93 | 0.005 | 0.0041 | 24.45 | 22.53 | 7.32 | 0.47 | 0.50 | - | bal. |
Ce0.035 | 0.013 | 0.37 | 2.96 | 0.005 | 0.0020 | 24.47 | 22.51 | 7.34 | 0.48 | 0.50 | 0.035 | bal. |
Ce0.089 | 0.012 | 0.40 | 2.95 | 0.005 | 0.0019 | 24.46 | 22.54 | 7.35 | 0.47 | 0.50 | 0.089 | bal. |
Fig. 2. Influence of Ce on the characteristics of inclusions in S32654 ingots: (a) the size distribution of the inclusions; (b) the average size (d) and number density (NA) of the inclusions.
Fig. 3. ODM micrographs of typical dendrite structures at the center of S32654 ingots: (a) Ce0; (b) Ce0.035; (c) Ce0.089; (d) the variation of average secondary dendrite arm spacing (SDAS) with Ce content.
Steel | Cr | Mo | Ni | Mn | Fe |
---|---|---|---|---|---|
Ce0 | 27.97 | 24.38 | 14.31 | 3.33 | 30.01 |
Ce0.035 | 28.24 | 24.29 | 13.96 | 3.34 | 30.17 |
Ce0.089 | 28.94 | 23.34 | 13.88 | 3.37 | 30.46 |
Table 2 Elemental compositions (wt.%) of σ phases formed in the three S32654 ingots.
Steel | Cr | Mo | Ni | Mn | Fe |
---|---|---|---|---|---|
Ce0 | 27.97 | 24.38 | 14.31 | 3.33 | 30.01 |
Ce0.035 | 28.24 | 24.29 | 13.96 | 3.34 | 30.17 |
Ce0.089 | 28.94 | 23.34 | 13.88 | 3.37 | 30.46 |
Phase | Lattice constant (nm) [ | Matching planes | Matching directions | Interatomic spacing (nm) | θ (°) | δ (%) | ||
---|---|---|---|---|---|---|---|---|
[uvw]s | [uvw]n | d[uvw]s | d[uvw]n | |||||
Austenite | a=0.362 | - | - | - | - | - | - | - |
MgO | a=0.422 | (111)MgO//(111)γ-Fe | $\left[ \bar{1}10 \right]$ | $\left[ \bar{1}10 \right]$ | 0.422 | 0.362 | 0 | 16.69 |
$\left[ \bar{1}01 \right]$ | $\left[ \bar{1}01 \right]$ | 0.422 | 0.362 | 0 | ||||
$\left[ \bar{2}11 \right]$ | $\left[ \bar{2}11 \right]$ | 0.731 | 0.627 | 0 | ||||
Ce2O3 | a=0.389 c=0.606 | $\left( 1\bar{1}00 \right)$Ce2O3//(111)γ-Fe | $\left[ 11\bar{2}0 \right]$ | $\left[ \bar{1}10 \right]$ | 0.389 | 0.362 | 0 | 3.83 |
[ | $\left[ \bar{1}\bar{1}2 \right]$ | 0.606 | 0.627 | 0 | ||||
$\left[ 11\bar{2}3 \right]$ | $\left[ \bar{1}12 \right]$ | 0.720 | 0.724 | 2.70 | ||||
Ce2O2S | a=0.398 c=0.688 | $\left( 1\bar{1}00 \right)$Ce2O2S//(100)γ-Fe | $\left[ 11\bar{2}0 \right]$ | $\left[ \bar{1}10 \right]$ | 0.398 | 0.362 | 0 | 5.61 |
[0001] | $\left[ \bar{2}\bar{2}0 \right]$ | 0.688 | 0.724 | 0 | ||||
$\left[ 11\bar{2}3 \right]$ | $\left[ \bar{2}\bar{1}0 \right]$ | 0.795 | 0.809 | 3.48 |
Table 3 Lattice disregistries between inclusions and austenite.
Phase | Lattice constant (nm) [ | Matching planes | Matching directions | Interatomic spacing (nm) | θ (°) | δ (%) | ||
---|---|---|---|---|---|---|---|---|
[uvw]s | [uvw]n | d[uvw]s | d[uvw]n | |||||
Austenite | a=0.362 | - | - | - | - | - | - | - |
MgO | a=0.422 | (111)MgO//(111)γ-Fe | $\left[ \bar{1}10 \right]$ | $\left[ \bar{1}10 \right]$ | 0.422 | 0.362 | 0 | 16.69 |
$\left[ \bar{1}01 \right]$ | $\left[ \bar{1}01 \right]$ | 0.422 | 0.362 | 0 | ||||
$\left[ \bar{2}11 \right]$ | $\left[ \bar{2}11 \right]$ | 0.731 | 0.627 | 0 | ||||
Ce2O3 | a=0.389 c=0.606 | $\left( 1\bar{1}00 \right)$Ce2O3//(111)γ-Fe | $\left[ 11\bar{2}0 \right]$ | $\left[ \bar{1}10 \right]$ | 0.389 | 0.362 | 0 | 3.83 |
[ | $\left[ \bar{1}\bar{1}2 \right]$ | 0.606 | 0.627 | 0 | ||||
$\left[ 11\bar{2}3 \right]$ | $\left[ \bar{1}12 \right]$ | 0.720 | 0.724 | 2.70 | ||||
Ce2O2S | a=0.398 c=0.688 | $\left( 1\bar{1}00 \right)$Ce2O2S//(100)γ-Fe | $\left[ 11\bar{2}0 \right]$ | $\left[ \bar{1}10 \right]$ | 0.398 | 0.362 | 0 | 5.61 |
[0001] | $\left[ \bar{2}\bar{2}0 \right]$ | 0.688 | 0.724 | 0 | ||||
$\left[ 11\bar{2}3 \right]$ | $\left[ \bar{2}\bar{1}0 \right]$ | 0.795 | 0.809 | 3.48 |
Fig. 8. (a) Effective inclusion density in the three S32654 ingots; (b) relationship between the effective inclusion density and the secondary dendrite spacing (SDAS).
Parameter | Cr | Mn | Ni | Mo | Ce | |
---|---|---|---|---|---|---|
C0i(wt.%) | 24.5 | 3.0 | 22.5 | 7.3 | 0.035 | 0.089 |
mi(°C/wt.%) | -6.75 | -2.11 | -5.94 | -1.88 | -11.79 | -11.79 |
ki | 0.87 | 0.34 | 1.05 | 0.58 | 0.011 | 0.011 |
Table 4 Parameters of different elements used for the calculation of ΔTmax.
Parameter | Cr | Mn | Ni | Mo | Ce | |
---|---|---|---|---|---|---|
C0i(wt.%) | 24.5 | 3.0 | 22.5 | 7.3 | 0.035 | 0.089 |
mi(°C/wt.%) | -6.75 | -2.11 | -5.94 | -1.88 | -11.79 | -11.79 |
ki | 0.87 | 0.34 | 1.05 | 0.58 | 0.011 | 0.011 |
Phase | Lattice constant (nm) [[ | Matching planes | Matching directions | Interatomic spacing (nm) | θ (°) | δ (%) | ||
---|---|---|---|---|---|---|---|---|
[uvw]s | [uvw]n | d[uvw]s | d[uvw]n | |||||
σ | a=0.880 c=0.454 | - | - | - | - | - | - | - |
MgO | a=0.422 | (100)MgO//(110)σ | [ | $\left[ \bar{1}01 \right]$ | 0.844 | 1.245 | 0 | 22.82 |
[ | $\left[ 0\bar{1}0 \right]$ | 0.422 | 0.454 | 0 | ||||
[ | $\left[ \bar{1}\bar{1}1 \right]$ | 0.944 | 1.325 | 6.52 | ||||
Ce2O3 | a=0.389 c=0.606 | $\left( \bar{2}1\bar{1}0 \right)$Ce2O3//(111)σ | $\left[ \bar{1}211 \right]$ | $\left[ \bar{1}10 \right]$ | 1.212 | 1.245 | 0 | 5.00 |
[ | $\left[ \bar{1}01 \right]$ | 0.906 | 0.990 | 3.03 | ||||
$\left[ \bar{1}013 \right]$ | $\left[ \bar{2}11 \right]$ | 1.939 | 2.019 | 2.08 | ||||
Ce2O2S | a=0.398 c=0.688 | $\left( 1\bar{1}00 \right)$Ce2O2S//(110)σ | $\left[ \bar{1}2\bar{1}0 \right]$ | [ | 0.398 | 0.457 | 0 | 10.10 |
$\left[ \bar{1}2\bar{1}3 \right]$ | $\left[ 1\bar{1}1 \right]$ | 1.432 | 1.331 | 3.95 | ||||
[ | $\left[ 1\bar{1}0 \right]$ | 1.376 | 1.25 | 0 |
Table 5 Lattice disregistries between inclusions and σ phase.
Phase | Lattice constant (nm) [[ | Matching planes | Matching directions | Interatomic spacing (nm) | θ (°) | δ (%) | ||
---|---|---|---|---|---|---|---|---|
[uvw]s | [uvw]n | d[uvw]s | d[uvw]n | |||||
σ | a=0.880 c=0.454 | - | - | - | - | - | - | - |
MgO | a=0.422 | (100)MgO//(110)σ | [ | $\left[ \bar{1}01 \right]$ | 0.844 | 1.245 | 0 | 22.82 |
[ | $\left[ 0\bar{1}0 \right]$ | 0.422 | 0.454 | 0 | ||||
[ | $\left[ \bar{1}\bar{1}1 \right]$ | 0.944 | 1.325 | 6.52 | ||||
Ce2O3 | a=0.389 c=0.606 | $\left( \bar{2}1\bar{1}0 \right)$Ce2O3//(111)σ | $\left[ \bar{1}211 \right]$ | $\left[ \bar{1}10 \right]$ | 1.212 | 1.245 | 0 | 5.00 |
[ | $\left[ \bar{1}01 \right]$ | 0.906 | 0.990 | 3.03 | ||||
$\left[ \bar{1}013 \right]$ | $\left[ \bar{2}11 \right]$ | 1.939 | 2.019 | 2.08 | ||||
Ce2O2S | a=0.398 c=0.688 | $\left( 1\bar{1}00 \right)$Ce2O2S//(110)σ | $\left[ \bar{1}2\bar{1}0 \right]$ | [ | 0.398 | 0.457 | 0 | 10.10 |
$\left[ \bar{1}2\bar{1}3 \right]$ | $\left[ 1\bar{1}1 \right]$ | 1.432 | 1.331 | 3.95 | ||||
[ | $\left[ 1\bar{1}0 \right]$ | 1.376 | 1.25 | 0 |
Fig. 12. Schematic diagram of refinement mechanism of Ce addition on the solidification structure and σ phase in S32654: (a)-(d) S32654; (e)-(h) S32654-Ce.
[1] | B. Wallén, M. Liljas, P. Stenvall, Mater. Corros. 44 (1993) 83-88. |
[2] | S.C. Zhang, H.B. Li, Z.H. Jiang, B.B. Zhang, Z.X. Li, J.X. Wu, H. Feng, H.C. Zhu, F. Duan, Corros. Sci. 163 (2020) 108295. |
[3] |
S. Heino, B. Karlsson, Acta Mater. 49 (2001) 339-351.
DOI URL |
[4] | in: ASME Boiler and Pressure Vessel Cod II, Materials, Part A, Ferrous Material Specifications (Beginning to SA-450), ASME, New York, 2013, pp. 377-390. |
[5] | Q. Wang, L.J. Wang, Y.H. Sun, A.M. Zhao, W. Zhang, J.M. Li, H.B. Dong, K.C. Chou, J. Alloys Compd. 815 (2020) 152418. |
[6] |
M. Baharvand, A. Zanganeh, H. Mirzadeh, M.H. Parsa, Mater. Sci. Technol. 36 (2020) 835-842.
DOI URL |
[7] |
I.H. Brown, Scripta Mater 54 (2006) 4 89-4 92.
DOI URL |
[8] |
R. Marin, H. Combeau, J. Zollinger, M. Dehmas, B. Rouat, A. Lamon-tagne, N. Loukachenko, L. Lhenry-Robert, Metall. Mater. Trans. A 51 (2020) 3526-3534.
DOI URL |
[9] |
H.C. Zhu, H.B. Li, S.C. Zhang, K.B. Li, G.H. Liu, Z.H. Jiang, X. Geng, P.D. Han, Ironmaking Steelmaking 42 (2015) 748-755.
DOI URL |
[10] |
R.W. Fonda, E.M. Lauridsen, W. Ludwig, P. Tafforeau, G. Spanos, Metall. Mater. Trans. A 38 (2007) 2721-2726.
DOI URL |
[11] |
A.C. Stauffer, D.A. Koss, J.B. McKirgan, Metall. Mater. Trans. A 35 (2004) 1317-1324.
DOI URL |
[12] |
Y.H. Zhou, Y.C. Liu, X.S. Zhou, C.X. Liu, J.X. Yu, Y. Huang, H.J. Li, W.Y. Li, J. Mater. Sci. Technol. 33 (2017) 1448-1456.
DOI URL |
[13] |
D.A. Arvola, S.N. Lekakh, R.J. O’Malley, L.N. Bartlett, Int. J. Metalcast. 13 (2018) 504-518.
DOI URL |
[14] |
C.F. Yu, P. Zhang, Z.F. Zhang, W. Liu, J. Mater. Sci. Technol. 46 (2020) 191-200.
DOI URL |
[15] | Z.W. Zhu, X.Q. Ma, C.M. Wang, G.Y. Mi, Mater. Des. 196 (2020) 109156. |
[16] |
M. Bleckmann, J. Gleinig, J. Hufenbach, H. Wendrock, L. Giebeler, J. Zeisig, U. Diekmann, J. Eckert, U. Kühn, J. Alloys Compd. 634 (2015) 200-207.
DOI URL |
[17] | C.M. Mao, C.X. Liu, L.M. Yu, H.J. Li, Y.C. Liu, Mater. Des. 197 (2021) 109252. |
[18] |
H. Liu, P. Fu, H. Liu, Y. Cao, C. Sun, N. Du, D. Li, J. Mater. Sci. Technol. 50 (2020) 245-256.
DOI URL |
[19] |
L. Chen, X.C. Ma, L.M. Wang, X.N. Ye, Mater. Des. 32 (2011) 2206-2212.
DOI URL |
[20] |
Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, T. Hashimoto, Acta Mater 84 (2015) 292-304.
DOI URL |
[21] |
Y. Han, H.B. Li, H Feng, K.M. Li, Y.Z. Tian, Z.H. Jiang, J. Mater. Sci. Technol. 65 (2021) 210-215.
DOI |
[22] |
H. Wang, Y.P. Bao, M. Zhao, M. Wang, X.M. Yuan, S. Gao, Int. J. Miner. Metall. Mater. 26 (2019) 1372-1384.
DOI URL |
[23] |
K.H. Kim, C.M. Bae, Met. Mater. Int. 19 (2013) 371-375.
DOI URL |
[24] | Y. Nuri, T. Ohashi, T. Hiromoto, O. Kitamura, ISIJInt 66 (1980)618-627. |
[25] |
S.C. Zhang, Z.H. Jiang, H.B. Li, B.B. Zhang, S.P. Fan, Z.X. Li, H. Feng, H.C. Zhu, Mater. Charact. 137 (2018) 244-255.
DOI URL |
[26] |
C.Y. Yang, Y.K. Luan, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 35 (2019) 1298-1308.
DOI URL |
[27] |
S.C. Zhang, H.B. Li, Z.H. Jiang, B.B. Zhang, Z.X. Li, J.X. Wu, S.P. Fan, H. Feng, H.C. Zhu, Mater. Charact. 152 (2019) 141-150.
DOI URL |
[28] |
H.Q. Yong, H.C. Zhang, Z.W. Zhen, P. Ming, Metall. Mater. Trans. A 18 (1987) 499-507.
DOI URL |
[29] |
R.J. Fruehan, Metall. Trans. B 10 (1979) 143-148.
DOI URL |
[30] |
A. Vahed, D.A.R. Kay, Metall. Trans. B 7 (1976) 375-383.
DOI URL |
[31] |
B.L. Bramfitt, Metall. Trans. 1 (1970) 1987-1995.
DOI URL |
[32] |
J. Zeng, C.Y. Zhu, W.L. Wang, X. Li, Metall. Mater. Trans. B 51 (2020) 2522-2531.
DOI URL |
[33] |
G. Li, P. Lan, J.Q. Zhang, G.X. Wu, Metall. Mater. Trans. B 51 (2020) 452-466.
DOI URL |
[34] | Z. William, Zeitschrift für Physikalische Chemie 123 (1926) 134-150. |
[35] |
M. Mikami, S. Nakamura, J. Alloys Compd. 408-412 (2006) 687-692.
DOI URL |
[36] |
Ø. Grong, L. Kolbeinsen, C.V.D. Eijk, G. Tranell, ISIJ Int 46 (2006) 824-831.
DOI URL |
[37] |
C.V.D. Eijk, Ø. Grong, F. Haakonsen, L. Kolbeinsen, G. Tranell, ISIJ Int 49 (2009) 1046-1050.
DOI URL |
[38] |
T.K. Lee, H.J. Kim, B.Y. Kang, S.K. Hwang, ISIJ Int 40 (2000) 1260-1268.
DOI URL |
[39] |
F.J. Barbaro, P. Krauklis, K.E. Easterling, Mater. Sci. Technol. 5 (2013) 1057-1068.
DOI URL |
[40] |
W.C. Jiao, H.B. Li, H. Feng, Z.H. Jiang, L.F. Xia, S.C. Zhang, H.C. Zhu, W. Wu, Metall. Mater. Trans. B 51 (2020) 2240-2251.
DOI URL |
[41] |
Y.C. Lee, A.K. Dahle, D.H. Stjohn, Metall. Mater. Trans. A 31 (2020) 2895-2906.
DOI URL |
[42] |
K. Eckler, D.M. Herlach, M.J. Aziz, Acta Metall. Mater. 42 (1994) 975-979.
DOI URL |
[43] |
M. Hillert, B. Sundman, Acta Metall 25 (1977) 11-18.
DOI URL |
[44] |
H.G. Fu, Q. Xiao, Y.X. Li, Mater. Sci. Eng. A 395 (2005) 281-287.
DOI URL |
[45] |
Q. Wang, L.J. Wang, W. Zhang, J.M. Li, K.C. Chou, Metall. Mater. Trans. B 51 (2020) 1773-1783.
DOI URL |
[46] |
T. Sourmail, Mater. Sci. Technol. 17 (2013) 1-14.
DOI URL |
[47] |
S.C. Zhang, H.B. Li, Z.H. Jiang, Z.X. Li, J.X. Wu, B.B. Zhang, F. Duan, H. Feng, H.C. Zhu, J. Mater. Sci. Technol. 42 (2020) 143-155.
DOI URL |
[48] |
S.H. Jeon, S.T. Kim, I.S. Lee, J.S. Kim, K.T. Kim, Y.S. Park, Corros. Sci. 66 (2013) 217-224.
DOI URL |
[1] | Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 251-259. |
[2] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
[3] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
[4] | Sam Yaw Anaman, Solomon Ansah, Hoon-Hwe Cho, Min-Gu Jo, Jin-Yoo Suh, Minjung Kang, Jong-Sook Lee, Sung-Tae Hong, Heung Nam Han. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 60-73. |
[5] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
[6] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[7] | Shan Cecilia Cao, Xiaochun Zhang, Yuan Yuan, Pengyau Wang, Lei Zhang, Na Liu, Yi Liu, Jian Lu. A constitutive model incorporating grain refinement strengthening on metallic alloys [J]. J. Mater. Sci. Technol., 2021, 88(0): 233-239. |
[8] | Peijian Shi, Yi Li, Yuebo Wen, Yiqi Li, Yan Wang, Weili Ren, Tianxiang Zheng, Yifeng Guo, Long Hou, Zhe Shen, Ying Jiang, Jianchao Peng, Pengfei Hu, Ningning Liang, Qingdong Liu, Peter K. Liaw, Yunbo Zhong. A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening [J]. J. Mater. Sci. Technol., 2021, 89(0): 88-96. |
[9] | Abbas Mohammadi, Nariman A. Enikeev, Maxim Yu. Murashkin, Makoto Arita, Kaveh Edalati. Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation [J]. J. Mater. Sci. Technol., 2021, 91(0): 78-89. |
[10] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[11] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[12] | Z.Y. Zhao, R.G. Guan, Y.F. Shen, P.K. Bai. Grain refinement mechanism of Mg-3Sn-1Mn-1La alloy during accumulative hot rolling [J]. J. Mater. Sci. Technol., 2021, 91(0): 251-261. |
[13] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
[14] | R.H. Duan, G.M. Xie, P. Xue, Z.Y. Ma, Z.A. Luo, C. Wang, R.D.K. Misra, G.D. Wang. Microstructural refinement mechanism and its effect on toughness in the nugget zone of high-strength pipeline steel by friction stir welding [J]. J. Mater. Sci. Technol., 2021, 93(0): 221-231. |
[15] | Chenxi Zhao, Yang Li, Jin Xu, Qun Luo, Ying Jiang, Qiling Xiao, Qian Li. Enhanced grain refinement of Al-Si alloys by novel Al-V-B refiners [J]. J. Mater. Sci. Technol., 2021, 94(0): 104-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||