J. Mater. Sci. Technol. ›› 2021, Vol. 94: 104-112.DOI: 10.1016/j.jmst.2021.02.065
• Research Article • Previous Articles Next Articles
Chenxi Zhaoa,1, Yang Lia,1, Jin Xub, Qun Luoa, Ying Jiangb, Qiling Xiaob, Qian Lia,b,*(
)
Received:2020-12-27
Revised:2021-02-11
Accepted:2021-02-21
Published:2021-12-20
Online:2021-05-18
Contact:
Qian Li
About author:*State Key Laboratory of Advanced Special Steels, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 2004 4 4,China. E-mail address: shuliqian@shu.edu.cn (Q. Li).1These authors contributed equally to this work.
Chenxi Zhao, Yang Li, Jin Xu, Qun Luo, Ying Jiang, Qiling Xiao, Qian Li. Enhanced grain refinement of Al-Si alloys by novel Al-V-B refiners[J]. J. Mater. Sci. Technol., 2021, 94: 104-112.
Fig. 6. Grain structures of the Al-10Si ingots with/without Al-V-B refiners: (a) without inoculation; (b) with 600 ppm V Al-3V-3B; (c) with 1000 ppm V Al-5V-B, (d) the average grain size of Al with different addition amount of V.
Fig. 7. (a, b) SEM images of Al-10Si/Al-3V-3B ingot; (c) high angle annular dark field (HAADF) image of the nucleation particles in the Al-10Si-0.06V-0.06B; (d) SAED pattern; (e-h) EDS mapping of Al; B; Si and V.
Fig. 8. (a, b) SEM images of Al-10Si/Al-5V-B ingot; (c) HAADF image of the nucleation particles in the Al-10Si-0.1V-0.02B ingot; (d) SAED pattern; (e-h) EDS mappings of Al, B, Si, and V.
Fig. 9. Atomic structures of the (0 0 0 1) VB2/α-Al interface in the Al-10Si-0.1V-0.02B ingot: (a) (0 0 0 1) VB2/α-Al; (b) ($10\bar{1}0$) VB2/α-Al; (c) ($11\bar{2}0$) VB2/α-Al.
| Supercell | Orientation relations | Lattice parameters(Å) | Number of atoms in the supercell | k-points | ||
|---|---|---|---|---|---|---|
| Al | M* | B | ||||
| (0 0 0 1) VB2/(1 1 1) Al | (0 0 0 1)[1 1-2 0] VB2/(1 1 1)[1 1 0] α-Al | a = b = 3.03c = 52.5α=β=90°γ=120° | 10 | 9 | 16 | 8 × 8 × 1 |
| (0 0 0 1) AlB2/(1 1 1) Al | (0 0 0 1)[1 1-2 0] VB2/(1 1 1)[1 1 0] α-Al | a = b = 3.03c = 52.5α=β=90°γ=120° | 19 | 0 | 16 | 8 × 8 × 1 |
| (0 0 0 1) TiB2/(1 1 1) Al | (0 0 0 1)[1 1-2 0] VB2/(1 1 1)[1 1 0] α-Al | a = b = 3.03c = 52.5α=β=90°γ=120° | 10 | 9 | 16 | 8 × 8 × 1 |
| (0 0 0 1) NbB2/(1 1 1) Al | (0 0 0 1)[1 1-2 0] VB2/(1 1 1)[1 1 0] α-Al | a = b = 3.03c = 52.5α=β=90°γ=120° | 10 | 9 | 16 | 8 × 8 × 1 |
Table 1 Details of the interfacial supercells.
| Supercell | Orientation relations | Lattice parameters(Å) | Number of atoms in the supercell | k-points | ||
|---|---|---|---|---|---|---|
| Al | M* | B | ||||
| (0 0 0 1) VB2/(1 1 1) Al | (0 0 0 1)[1 1-2 0] VB2/(1 1 1)[1 1 0] α-Al | a = b = 3.03c = 52.5α=β=90°γ=120° | 10 | 9 | 16 | 8 × 8 × 1 |
| (0 0 0 1) AlB2/(1 1 1) Al | (0 0 0 1)[1 1-2 0] VB2/(1 1 1)[1 1 0] α-Al | a = b = 3.03c = 52.5α=β=90°γ=120° | 19 | 0 | 16 | 8 × 8 × 1 |
| (0 0 0 1) TiB2/(1 1 1) Al | (0 0 0 1)[1 1-2 0] VB2/(1 1 1)[1 1 0] α-Al | a = b = 3.03c = 52.5α=β=90°γ=120° | 10 | 9 | 16 | 8 × 8 × 1 |
| (0 0 0 1) NbB2/(1 1 1) Al | (0 0 0 1)[1 1-2 0] VB2/(1 1 1)[1 1 0] α-Al | a = b = 3.03c = 52.5α=β=90°γ=120° | 10 | 9 | 16 | 8 × 8 × 1 |
| [1] | I. Polmear, D. StJohn, J.F. Nie, M. Qian, Light Alloys,Butterworth-Heinemann, Boston, pp. 157-263. |
| [2] |
K. Wang, H.Y. Jiang, Y.W. Jia, H. Zhou, Q.D. Wang, B. Ye, W.J. Ding, Acta Mater. 103 (2016) 252-263.
DOI URL |
| [3] |
L. Bolzoni, M. Nowak, N.H. Babu, Mater. Des. 66 (2015) 376-383.
DOI URL |
| [4] |
Y. Zhang, S. Ji, Z. Fan, J. Alloys Compd. 710 (2017) 166-171.
DOI URL |
| [5] |
P. Li, S. Liu, L. Zhang, X. Liu, Mater. Des. 47 (2013) 522-528.
DOI URL |
| [6] | H. Heshmati, M. Ketabchi, A. Kalaki, M. Tahriri, M. Ashuri, Int. J. Cast Met.Res. 26 (2013) 100-104. |
| [7] |
H. Abdizadeh, M. Ashuri, P.T. Moghadam, A. Nouribahadory, H.R. Baharvandi, Mater. Des. 32 (2011) 4 417-4 423.
DOI URL |
| [8] |
D.G. Mccartney, Metall. Rev. 34 (1989) 247-260.
DOI URL |
| [9] |
B.S. Murty, S.A. Kori, M. Chakraborty, Int. Mater. Rev. 47 (2013) 3-29.
DOI URL |
| [10] |
Y. Han, D. Shu, J. Wang, B. Sun, Mater. Sci. Eng. A 430 (2006) 326-331.
DOI URL |
| [11] |
Y. Birol, J. Alloys Compd. 486 (2009) 219-222.
DOI URL |
| [12] |
A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spit-tle, A. Tronche, Adv. Eng. Mater. 5 (2010) 81-91.
DOI URL |
| [13] |
S. Li, J. Mater. Process. Technol. 63 (1997) 585-589.
DOI URL |
| [14] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
| [15] |
Y. Birol, Mater. Sci. Technol. 28 (2013) 363-367.
DOI URL |
| [16] |
Y. Birol, Mater. Sci. Technol. 30 (2013) 277-282.
DOI URL |
| [17] |
Z. Chen, H. Kang, G. Fan, J. Li, Y. Lu, J. Jie, Y. Zhang, T. Li, X. Jian, T. Wang, Acta Mater. 120 (2016) 168-178.
DOI URL |
| [18] |
A. Banerji, W. Reif, Metall. Trans. A 17 (1986) 2127-2137.
DOI URL |
| [19] |
M. Nowak, L. Bolzoni, N.Hari Babu, Mater. Des. 66 (2015) 366-375.
DOI URL |
| [20] |
M. Nowak, W.K. Yeoh, L. Bolzoni, N.H. Babu, Mater. Des. 75 (2015) 40-46.
DOI URL |
| [21] |
Y. Li, B. Hu, Q. Gu, B. Liu, Q. Li, Scr. Mater. 160 (2019) 75-80.
DOI URL |
| [22] | J. Xu, Y. Li, B. Hu, Y. Jiang, Q. Li, J. Mater. Sci. 54 (2019) 14561-14576. |
| [23] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2020) 190-201.
DOI URL |
| [24] |
Y. Li, Y. Jiang, B. Hu, Q. Li, Scr. Mater. 187 (2020) 262-267.
DOI URL |
| [25] |
J. Xu, Y. Li, K. Ma, Y. Fu, E. Guo, Z. Chen, Q. Gu, Y. Han, T. Wang, Q. Li, Scr. Mater. 187 (2020) 142-147.
DOI URL |
| [26] | H.P. Sun, J. Wu, T. Tang, B. Fan, Z.H. Tang, Metall. Mater. 24 (2017) 833-841. |
| [27] |
Y. Meng, J. Cui, Z. Zhao, Y. Zuo, Metall. Mater. Trans. A 45 (2014) 3741-3747.
DOI URL |
| [28] |
Y. Meng, J. Cui, Z. Zhao, Y. Zuo, J. Alloys Compd. 573 (2013) 102-111.
DOI URL |
| [29] | Y.H. Zhang, Y.C. Ye, Y.P. Shen, W. Chang, D.H. StJohn, G. Wang, Q.J. Zhai, J. Alloys Compd. 812 (2020) 152022-152031. |
| [30] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
| [31] | H.L. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics:The Cal-phad Method, Cambridge University Press, Cambridge, 2007. |
| [32] |
Q. Luo, C. Zhai, D. Sun, W. Chen, Q. Li, J. Mater. Sci. Technol. 35 (2019) 2115-2120.
DOI |
| [33] |
W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates, Calphad 33 (2009) 328-342.
DOI URL |
| [34] |
V.T. Witusiewicz, A.A. Bondar, U. Hecht, J. Zollinger, L.V. Artyukh, T.Y. Ve-likanova, J. Alloys Compd. 474 (2009) 86-104.
DOI URL |
| [35] |
S. Pinto, A.A. Antonio, N. Chaia, F. Ferreira, G.C. Coelho, J.M. Fiorani, N. David, M. Vilasi, C.A. Nunes, Calphad 59 (2017) 199-206.
DOI URL |
| [36] |
H.M. Chen, H.Y. Qi, F. Zheng, L.B. Liu, Z.P. Jin, J. Alloys Compd. 481 (2009) 182-189.
DOI URL |
| [37] |
Q. Luo, K. Li, Q. Li, J. Mater. Sci. Technol. 34 (2018) 1592-1601.
DOI |
| [38] |
M.X. Zhang, P.M. Kelly, M. Easton, J. Taylor, Acta Mater. 53 (2005) 1427-1438.
DOI URL |
| [39] |
M.X. Zhang, P.M. Kelly, Prog. Mater Sci. 54 (2009) 1101-1170.
DOI URL |
| [40] |
F. Wang, D. Qiu, Z.L. Liu, J. Taylor, M. Easton, M.X. Zhang, Trans. Nonferrous Met. Soc. China. 24 (2014) 2034-2040.
DOI URL |
| [41] | B. Dang, X. Zhang, Y.Z. Chen, C.X. Chen, H.T. Wang, F. Liu, Sci. Rep. 6 (2016) 30874. |
| [42] |
Y. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater. 178 (2020) 422-427.
DOI URL |
| [43] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
| [44] |
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter. 14 (2002) 2717-2744.
DOI URL |
| [45] |
D. Vanderbilt, Phy. Rev. B 41 (1990) 7892-7895.
DOI URL |
| [46] |
K.B. Burke, J.P. Perdew, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
PMID |
| [47] |
C. Deng, B. Xu, P. Wu, Q. Li, Appl. Surf. Sci. 425 (2017) 639-645.
DOI URL |
| [48] |
Y. Ding, R. Xu, Surf. Sci. 657 (2017) 104-110.
DOI URL |
| [49] |
N. Eustathopoulos, L. Coudurier, J.C. Joud, P. Desré, J. Cryst. Growth 33 (1) (1976) 105-115.
DOI URL |
| [1] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
| [2] | Peng-fei He, Guo-zheng Ma, Hai-dou Wang, Ling Tang, Ming Liu, Yu Bai, Yu Wang, Jian-jiang Tang, Dong-yu He, Hai-chao Zhao, Tian-yang Yu. Influence of in-flight particle characteristics and substrate temperature on the formation mechanisms of hypereutectic Al-Si-Cu coatings prepared by supersonic atmospheric plasma spraying [J]. J. Mater. Sci. Technol., 2021, 87(0): 216-233. |
| [3] | Sam Yaw Anaman, Solomon Ansah, Hoon-Hwe Cho, Min-Gu Jo, Jin-Yoo Suh, Minjung Kang, Jong-Sook Lee, Sung-Tae Hong, Heung Nam Han. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 60-73. |
| [4] | Shan Cecilia Cao, Xiaochun Zhang, Yuan Yuan, Pengyau Wang, Lei Zhang, Na Liu, Yi Liu, Jian Lu. A constitutive model incorporating grain refinement strengthening on metallic alloys [J]. J. Mater. Sci. Technol., 2021, 88(0): 233-239. |
| [5] | Wenqiang Li, Yiming Zhao, Ning Liu, Changji Li, Ruiming Ren, Dayong Cai, Hongwang Zhang. Strain gradient induced grain refinement far below the size limit in a low carbon hypoeutectoid steel (0.19wt% C) via pipe inner surface grinding treatment [J]. J. Mater. Sci. Technol., 2021, 78(0): 155-169. |
| [6] | Jingyu Pang, Hongwei Zhang, Long Zhang, Zhengwang Zhu, Huameng Fu, Hong Li, Aimin Wang, Zhengkun Li, Haifeng Zhang. Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping [J]. J. Mater. Sci. Technol., 2021, 78(0): 74-80. |
| [7] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
| [8] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
| [9] | Zhen Li, Zhang-Zhi Shi, Hai-Jun Zhang, Hua-Fang Li, Yun Feng, Lu-Ning Wang. Hierarchical microstructure and two-stage corrosion behavior of a high-performance near-eutectic Zn-Li alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 50-65. |
| [10] | Yuliang Zhao, Weiwen Zhang, Dongfu Song, Bo Lin, Fanghua Shen, Donghai Zheng, ChunXiao Xie, Zhenzhong Sun, Yanan Fu, Runxia Li. Nucleation and growth of Fe-rich phases in Al-5Ti-1B modified Al-Fe alloys investigated using synchrotron X-ray imaging and electron microscopy [J]. J. Mater. Sci. Technol., 2021, 80(0): 84-99. |
| [11] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
| [12] | Jing Wang, Lu Han, Xiaohu Li, Dongguang Liu, Laima Luo, Yuan Huang, Yongchang Liu, Zumin Wang. Supermodulus effect by grain-boundary wetting in nanostructured multilayers [J]. J. Mater. Sci. Technol., 2021, 65(0): 202-209. |
| [13] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
| [14] | Z.Y. Zhao, R.G. Guan, Y.F. Shen, P.K. Bai. Grain refinement mechanism of Mg-3Sn-1Mn-1La alloy during accumulative hot rolling [J]. J. Mater. Sci. Technol., 2021, 91(0): 251-261. |
| [15] | Duan R.H., Xie G.M., Xue P., Ma Z.Y., Luo Z.A., Wang C., Misra R.D.K., Wang G.D.. Microstructural refinement mechanism and its effect on toughness in the nugget zone of high-strength pipeline steel by friction stir welding [J]. J. Mater. Sci. Technol., 2021, 93(0): 221-231. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
