J. Mater. Sci. Technol. ›› 2021, Vol. 94: 99-103.DOI: 10.1016/j.jmst.2021.02.073
• Research Article • Previous Articles Next Articles
Si-Chun Luoa,b, Wei-Ming Guoa,*(
), Yu-Zhang Zhoua, Kevin Plucknetta,c, Hua-Tay Lina,*(
)
Revised:2021-02-22
Published:2021-12-20
Online:2021-12-15
Contact:
Wei-Ming Guo,Hua-Tay Lin
About author:huataylin@comcast.net (H.-T. Lin)Si-Chun Luo, Wei-Ming Guo, Yu-Zhang Zhou, Kevin Plucknett, Hua-Tay Lin. Textured and toughened high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCw ceramics[J]. J. Mater. Sci. Technol., 2021, 94: 99-103.
Fig. 1. XRD patterns collected on the top surface (TS) of the high-entropy ceramics after SPS consolidation at 2000 °C: (a) HEC, (b) HEC-5S, (c) HEC-10S, and (d) HEC-20S compositions. (e) The corresponding X-ray diffraction pattern from the side surface (SS) of the HEC-20S composition. The insets show the relative compaction direction during SPS and the associated the powder diffraction standard (PDF #73-1708) for β-SiC.
Fig. 2. SEM images of the polished and thermally etched side surfaces ((a) HEC, (c) HEC-5S, (e) HEC-10S, and (g) HEC-20S), and fracture side surfaces ((b) HEC, (d) HEC-5S, (f) HEC-10S, and (h) HEC-20S) for the monolithic and composite ceramics. (i) SEM image of the polished top surface of HEC-20S. (j) SEM image of the raw SiC whiskers. The insets show the relative pressing direction during SPS.
Fig. 3. (a) SEM image of the polished top surface, and corresponding elemental compositional EDS maps, for the as-fabricated HEC-20S sample. (b) EDS spectrum analysis from (a).
| Composition | Vickers hardness (GPa) | Fracture toughness (MPa∙m1/2) | ||
|---|---|---|---|---|
| Top surface | Side surface | Top surface | Side surface | |
| HEC | 24.4 ± 0.7 | - | 3.0 ± 0.2 | - |
| HEC-5S | 24.8 ± 0.6 | 24.7 ± 0.6 | 3.4 ± 0.1 | 3.3 ± 0.2 |
| HEC-10S | 24.6 ± 0.5 | 24.6 ± 0.9 | 3.7 ± 0.3 | 3.5 ± 0.2 |
| HEC-20S | 24.5 ± 0.9 | 24.9 ± 0.5 | 4.3 ± 0.3 | 4.0 ± 0.3 |
| (Hf,Zr,Ti,Ta,Nb)C [ | 25.0 ± 1.0a | 3.5 ± 0.3c | ||
| (Ta,Zr,Nb)C [ | - | ~2.9c | ||
| (Hf,Zr,Ta,Nb,Ti)C [ | ~21.6 | 3.0 ± 0.2 | ||
| (Ti,Zr,Nb,Ta,Mo)C [ | 25.3 ± 0.3b | 3.3 ± 0.1c | ||
Table 1 Vickers hardness and fracture toughness of the sintered high entropy carbide ceramics in this work, with comparison to prior published literature values.
| Composition | Vickers hardness (GPa) | Fracture toughness (MPa∙m1/2) | ||
|---|---|---|---|---|
| Top surface | Side surface | Top surface | Side surface | |
| HEC | 24.4 ± 0.7 | - | 3.0 ± 0.2 | - |
| HEC-5S | 24.8 ± 0.6 | 24.7 ± 0.6 | 3.4 ± 0.1 | 3.3 ± 0.2 |
| HEC-10S | 24.6 ± 0.5 | 24.6 ± 0.9 | 3.7 ± 0.3 | 3.5 ± 0.2 |
| HEC-20S | 24.5 ± 0.9 | 24.9 ± 0.5 | 4.3 ± 0.3 | 4.0 ± 0.3 |
| (Hf,Zr,Ti,Ta,Nb)C [ | 25.0 ± 1.0a | 3.5 ± 0.3c | ||
| (Ta,Zr,Nb)C [ | - | ~2.9c | ||
| (Hf,Zr,Ta,Nb,Ti)C [ | ~21.6 | 3.0 ± 0.2 | ||
| (Ti,Zr,Nb,Ta,Mo)C [ | 25.3 ± 0.3b | 3.3 ± 0.1c | ||
Fig. 4. Representative SEM images of the crack propagation path on the top surfaces of the sintered specimens: (a) HEC, and (b) HEC-20S. Arrows show examples of crack deflection and whisker pullout.
| [1] |
D. Liu, H.H. Liu, S.S. Ning, Y.H. Chu, J. Adv. Ceram. 9 (2020) 339-348.
DOI URL |
| [2] |
P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.P. Maria, D.W. Brenner, K.S. Vecchio, S. Curtarolo, Nat. Commun. 9 (2018) 4980.
DOI URL |
| [3] | R.Z. Zhang, M.J. Reece, J. Mater. Chem. A 7 (2019) 22148-22162. |
| [4] |
L. Feng, W.T. Chen, W.G. Fahrenholtz, G.E. Hilmas, J. Am. Ceram. Soc. 104 (2021) 419-427.
DOI URL |
| [5] |
Y.C. Wang, M.J. Reece, Scr. Mater. 193 (2021) 86-90.
DOI URL |
| [6] |
B.L. Ye, T.Q. Wen, D. Liu, Y.H. Chu, Corros. Sci. 153 (2019) 327-332.
DOI URL |
| [7] |
D. Demirskyi, H. Borodianska, T.S. Suzuki, Y. Sakka, K. Yoshimi, O. Vasylkiv, Scr. Mater. 164 (2019) 12-16.
DOI URL |
| [8] | D. Demirskyi, T.S. Suzuki, K. Yoshimi, O. Vasylkiv, Open Ceram 2 (2020) 10 0 015. |
| [9] |
K. Wang, L. Chen, C.G. Xu, W. Zhang, Z.G. Liu, Y.J. Wang, J.H. Ouyang, X.H. Zhang, Y.D. Fu, Y. Zhou, J. Mater. Sci. Technol. 39 (2020) 99-105.
DOI |
| [10] |
T.Q. Wen, B.L. Ye, M.C. Nguyen, M.D. Ma, Y.H. Chu, J. Am. Ceram. Soc. 103 (2020) 6475-6489.
DOI URL |
| [11] |
J.X. Deng, J. Mater. Process. Technol. 98 (20 0 0) 292-298.
DOI URL |
| [12] | X.H. Zhang, L. Xu, S.Y. Du, J.C. Han, P. Hu, W.B. Han, Mater. Lett. 62 (2008) 1059-1060. |
| [13] |
T. Zhu, L. Xu, X.H. Zhang, W.B. Han, P. Hu, L. Weng, J. Eur. Ceram. Soc. 29 (2009) 2893-2901.
DOI URL |
| [14] | P. Zhang, P. Hu, X.H. Zhang, J.C. Han, S.H. Meng, J. Alloys Compd. 427 (2009) 358-362. |
| [15] | Y.M. An, X.H. Xu, K.X. Gui, Ceram. Int. 42 (2016) 14066-14070. |
| [16] | M. Fattahi, A. Mohammadzadeh, Y. Pazhouhanfar, S. Shaddel, M.S. Asl, A.S. Namini, Ceram. Int. 46 (2020) 11735-11742. |
| [17] | P.F. Becher, G.C. Wei, J. Am. Ceram. Soc. 67 (1984) 267-269. |
| [18] |
Y. Luo, S.L. Zheng, S.H. Ma, C.L. Liu, X.H. Wang, J. Eur. Ceram. Soc. 38 (2018) 5282-5293.
DOI URL |
| [19] |
G.D. Portu Bellosi, Mater. Sci. Eng. A 109 (1989) 357-362.
DOI URL |
| [20] | X.B. Zhou, L. Jing, Y.D. Kwon, J.Y. Kim, Z.G. Huang, D.H. Yoon, J. Lee, Q. Huang. J. Adv. Ceram. 9 (2020) 462-470. |
| [21] |
S.C. Luo, W.M. Guo, K. Plucknett, H.T. Lin, J. Eur. Ceram. Soc. 41 (2021) 3189-3195.
DOI URL |
| [22] |
A.G. Evans, E.A. Charles, J. Am. Ceram. Soc. 59 (1976) 371-372.
DOI URL |
| [23] | B.Z. Song, B. Zhao, Y.F. Lu, S.G. Wei, B.B. Fan, X.Y. Zhang, R. Zhang, Phys. Chem. Chem. Phys. 28 (2018) 25799-25805. |
| [24] |
P. Šajgalík, J. Sedláček, Z. Lenčéš, J. Dusza, H.T. Lin, J. Eur. Ceram. Soc. 36 (2016) 1333-1341.
DOI URL |
| [1] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
| [2] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
| [3] | Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity [J]. J. Mater. Sci. Technol., 2021, 62(0): 195-202. |
| [4] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
| [5] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
| [6] | Wei Guo, Zhihui Yu, Wenting Wei, Zhenghua Meng, Huajie Mao, Lin Hua. Effect of film types on thermal response, cellular structure, forming defects and mechanical properties of combined in-mold decoration and microcellular injection molding parts [J]. J. Mater. Sci. Technol., 2021, 92(0): 98-108. |
| [7] | Yamamoto K., Takahashi M., Kamikubo Y., Sugiura Y., Iwasawa S., Nakata T., Kamado S.. Optimization of Cu content for the development of high-performance T5-treated thixo-cast Al-7Si-0.5Mg-Cu (wt.%) alloy [J]. J. Mater. Sci. Technol., 2021, 93(0): 178-190. |
| [8] | Ban Yijie, Geng Yongfeng, Hou Jinrui, Zhang Yi, Zhou Meng, Jia Yanlin, Tian Baohong, Liu Yong, Li Xu, A. Volinsky Alex. Properties and precipitates of the high strength and electrical conductivity Cu-Ni-Co-Si-Cr alloy [J]. J. Mater. Sci. Technol., 2021, 93(0): 1-6. |
| [9] | Xu Yaqun, Fu Yu, Li Juan, Xiao Wenlong, Zhao Xinqing, Ma Chaoli. Effects of tungsten addition on the microstructural stability and properties of Ti-6.5Al-2Sn-4Hf-2Nb-based high temperature titanium alloys [J]. J. Mater. Sci. Technol., 2021, 93(0): 147-156. |
| [10] | Haifang Liu, Haijun Su, Zhonglin Shen, Di Zhao, Yuan Liu, Yinuo Guo, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 218-223. |
| [11] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
| [12] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
| [13] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
| [14] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
| [15] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
