J. Mater. Sci. Technol. ›› 2021, Vol. 94: 90-98.DOI: 10.1016/j.jmst.2021.02.067
• Research Article • Previous Articles Next Articles
Zhong Huanga, Yangfan Zhenga, Haijun Zhanga,*(
), Faliang Lia, Yuan Zenga, Quanli Jiab, Jun Zhanga, Junyi Lia, Shaowei Zhangc,*(
)
Received:2020-12-31
Revised:2021-02-09
Accepted:2021-02-17
Published:2021-05-18
Online:2021-05-18
Contact:
Haijun Zhang,Shaowei Zhang
About author:s.zhang@exeter.ac.uk (S. Zhang).Zhong Huang, Yangfan Zheng, Haijun Zhang, Faliang Li, Yuan Zeng, Quanli Jia, Jun Zhang, Junyi Li, Shaowei Zhang. High-yield production of carbon nanotubes from waste polyethylene and fabrication of graphene-carbon nanotube aerogels with excellent adsorption capacity[J]. J. Mater. Sci. Technol., 2021, 94: 90-98.
Fig. 2. Effects of protectant type on phase formation (a) and the yield of CNTs (b) in samples resulted from 2 h pyrolysis at 873 K with 0.50 wt.% Co(NO3)2 catalyst precursor.
Fig. 3. SEM images of the samples whose XRD-patterns and yields of CNTs are given in Fig. 2:(a) without protectant, None; (b) oleylamine, OAm; (c) ISOBAM-104, ISOBAM; (d) polyvinylpyrrolidone, PVP; (e) hexadecyl trimethyl ammonium bromide, CTAB; (f) sodium dodecyl benzene sulfonate, SDBS.
Fig. 4. TEM (a, b) and HRTEM images (c, d) of CNTs prepared at 873 K for 2 h using 0.50 wt.% Co(NO3)2 as a catalyst precursor and OAm as a protectant (ROAm = 6).
| Preparation condition | CNTs yield | Experimental process | Refs. |
|---|---|---|---|
| PE/(Co/OAm)/873 K | 59.0 wt.%b | Simple | This work |
| PE/(Co)/873 K | 7.0 wt.% | Simple | This work |
| PP/(Ni)/1073 K | 20.0 wt.% | Medium | |
| PE/(Ni)/973 K | 17.0 wt.% | Simple | |
| PE/PS/(Ni@Al2O3)/1073 K | 26.0 wt.% | Medium (special reactor) | |
| Mixed plastics (PP/PE/PS)/ | |||
| (Fe-Ni@Al2O3)/1073 K | 50.9 wt.% | Medium (special reactor) | |
| Mixed plastics (PP/PE/PS)/(Fe-Ni@Al2O3)/1073 K | 40.7 wt.% | Medium (special reactor) | |
| PP/(Fe@SiO2)/1073 K | 29.0 wt.% | Medium | |
| PE/(CuBr-NiO)/973 K | 56.5 wt.% | Simple | |
| PP/(halogenated compound-NiO)/973 K | 55.9 wt.% | Medium | |
| Mixed plastics (PP/PE/PS)/(Ni@Al2O3)/1073 K | 35.0 wt.% | Medium (special reactor) | |
| PP/(Ni-Mo-Al)/1073 K | 57.7 wt.% | Complex (special reactor) | |
| PE/(Ni-Mn-Al)/1073 K | 48.0 wt.% | Complex | |
| PE/(Ni-Mo-Mg)/923~1123 K | 28.4 wt.% | Simple |
Table 1 Comparison of yields of CNTs reported to date for catalytic pyrolysis of waste plastics.a.
| Preparation condition | CNTs yield | Experimental process | Refs. |
|---|---|---|---|
| PE/(Co/OAm)/873 K | 59.0 wt.%b | Simple | This work |
| PE/(Co)/873 K | 7.0 wt.% | Simple | This work |
| PP/(Ni)/1073 K | 20.0 wt.% | Medium | |
| PE/(Ni)/973 K | 17.0 wt.% | Simple | |
| PE/PS/(Ni@Al2O3)/1073 K | 26.0 wt.% | Medium (special reactor) | |
| Mixed plastics (PP/PE/PS)/ | |||
| (Fe-Ni@Al2O3)/1073 K | 50.9 wt.% | Medium (special reactor) | |
| Mixed plastics (PP/PE/PS)/(Fe-Ni@Al2O3)/1073 K | 40.7 wt.% | Medium (special reactor) | |
| PP/(Fe@SiO2)/1073 K | 29.0 wt.% | Medium | |
| PE/(CuBr-NiO)/973 K | 56.5 wt.% | Simple | |
| PP/(halogenated compound-NiO)/973 K | 55.9 wt.% | Medium | |
| Mixed plastics (PP/PE/PS)/(Ni@Al2O3)/1073 K | 35.0 wt.% | Medium (special reactor) | |
| PP/(Ni-Mo-Al)/1073 K | 57.7 wt.% | Complex (special reactor) | |
| PE/(Ni-Mn-Al)/1073 K | 48.0 wt.% | Complex | |
| PE/(Ni-Mo-Mg)/923~1123 K | 28.4 wt.% | Simple |
Fig. 5. Compression process under a 100.0 g load (a), standing on a Setaria viridis (b), WCA measurement (c), and Cyclic compressibility (d) of a ~4.0 cm3 graphene-CNT aerogel prepared with a CNT/GO mass ratio of 5:5 and a solid content of 0.2 wt.%.
Fig. 6. XRD patterns (a) and Raman spectra (b) of the commercial graphene oxide (GO), as-obtained CNTs, and graphene-CNT aerogel prepared with a CNT/GO mass ratio of 5:5 and a solid content of 0.2 wt.%.
Fig. 7. SEM images of pure graphene aerogel (a) and graphene-CNT aerogel (b) prepared with a CNT/GO mass ratio of 5:5 and a solid content of 0.2 wt.%.
Fig. 8. TEM (a), HRTEM (b, c) images and selected area electron diffraction (SAED) pattern (d) of the graphene-CNT aerogel prepared with a CNT/GO mass ratio of 5:5 and a solid content of 0.2 wt.%.
Fig. 9. Absorption capacities (Q) for toluene, paraffine, vegetable oil and phenoxin (b), and recyclability for the adsorption of paraffine under adsorption-squeezing cycles (c) of the graphene-CNT aerogel prepared with a CNT/GO mass ratio of 5:5.
| Types | Sorbentmaterials | Adsorbate | Absorptioncapacity Q (g/g) | Cost | Refs. |
|---|---|---|---|---|---|
| Aerogel | Graphene/CNTs | Oil and organic solvent | 289-410 | Inexpensive | This work |
| Graphene/CNTs | Oil and organic solvent | 215-913 | Expensive | [ | |
| Graphene/CNTs | Oil and organic solvent | 100-270 | Medium | [ | |
| Graphene/CNTs | Oil and organic solvent | 30-35 | Medium | [ | |
| Pyrrole graphene/CNTs | Organic solvent | 121-302 | Medium | [ | |
| Nitrogen-doped graphene | Oil and organic solvent | 200-600 | Expensive | [ | |
| Graphene | Oil and organic solvent | 170-225 | Inexpensive | [ | |
| Oleophilic carbon | Oil and organic solvent | 81-171 | Inexpensive | [ | |
| Carbon microtubes | Oil and organic solvent | 78-348 | Inexpensive | [ | |
| Carbon fiber | Oil and organic solvent | 106-312 | Inexpensive | [ | |
| Twist carbon fiber | Oil and organic solvent | 50-190 | Inexpensive | [ | |
| Sponge | Graphene | Oil and organic solvent | 54-165 | Expensive | [ |
| CNTs | Oil and organic solvent | 80-180 | Expensive | [ | |
| Graphene | Oil and organic solvent | 60-160 | Expensive | [ | |
| Boron-doped CNTs | Oil and organic solvent | 25-125 | Expensive | [ | |
| Silylated wood | Oil and organic solvent | 16-41 | Inexpensive | [ | |
| Foam | Graphene/CNTs | Oil and organic solvent | 80-140 | Expensive | [ |
| Graphene-modified foam | Oil and organic solvent | 60-140 | Inexpensive | [ | |
| Reduced graphite oxide | Oil and organic solvent | 5-40 | Expensive | [ | |
| Graphene | Oil and organic solvent | 120-250 | Expensive | [ |
Table 2 Absorption capacities (Q) of the as-prepared aerogel and other aerogels, sponges and foams prepared previously.
| Types | Sorbentmaterials | Adsorbate | Absorptioncapacity Q (g/g) | Cost | Refs. |
|---|---|---|---|---|---|
| Aerogel | Graphene/CNTs | Oil and organic solvent | 289-410 | Inexpensive | This work |
| Graphene/CNTs | Oil and organic solvent | 215-913 | Expensive | [ | |
| Graphene/CNTs | Oil and organic solvent | 100-270 | Medium | [ | |
| Graphene/CNTs | Oil and organic solvent | 30-35 | Medium | [ | |
| Pyrrole graphene/CNTs | Organic solvent | 121-302 | Medium | [ | |
| Nitrogen-doped graphene | Oil and organic solvent | 200-600 | Expensive | [ | |
| Graphene | Oil and organic solvent | 170-225 | Inexpensive | [ | |
| Oleophilic carbon | Oil and organic solvent | 81-171 | Inexpensive | [ | |
| Carbon microtubes | Oil and organic solvent | 78-348 | Inexpensive | [ | |
| Carbon fiber | Oil and organic solvent | 106-312 | Inexpensive | [ | |
| Twist carbon fiber | Oil and organic solvent | 50-190 | Inexpensive | [ | |
| Sponge | Graphene | Oil and organic solvent | 54-165 | Expensive | [ |
| CNTs | Oil and organic solvent | 80-180 | Expensive | [ | |
| Graphene | Oil and organic solvent | 60-160 | Expensive | [ | |
| Boron-doped CNTs | Oil and organic solvent | 25-125 | Expensive | [ | |
| Silylated wood | Oil and organic solvent | 16-41 | Inexpensive | [ | |
| Foam | Graphene/CNTs | Oil and organic solvent | 80-140 | Expensive | [ |
| Graphene-modified foam | Oil and organic solvent | 60-140 | Inexpensive | [ | |
| Reduced graphite oxide | Oil and organic solvent | 5-40 | Expensive | [ | |
| Graphene | Oil and organic solvent | 120-250 | Expensive | [ |
| [1] |
L. Lebreton, A. Andrady, Palgrave Commun 5 (2019) 1-11.
DOI URL |
| [2] |
S.D.A. Sharuddin, F. Abnisa, W. Daud, M.K. Aoua, Energ. Convers. Manage. 115 (2016) 308-326.
DOI URL |
| [3] | C. Zhuo, Y.A. Levendis, J. Appl. Polym. Sci. 131 (2014) 1001-1007. |
| [4] |
V. Schroeder, S. Savagatrup, M. He, S. Lin, T.M. Swager, Chem. Rev. 119 (2018) 599-663.
DOI URL |
| [5] |
R.S. Ruoff, D.C. Lorents, Carbon 33 (1995) 925-930.
DOI URL |
| [6] |
S. Mallakpour, E. Khadem, Chem. Eng. J. 302 (2016) 344-367.
DOI URL |
| [7] |
D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106 (2006) 1105-1136.
DOI URL |
| [8] | A. Bazargan, G. McKay, Chem. Eng. J. 195 (2012) 377-391. |
| [9] |
N. Mishra, G. Das, A. Ansaldo, A. Genovese, M. Malerba, M. Povia, D. Ricci, E.D. Fabrizio, E.D. Zitti, M. Sharon, J. Anal. Appl. Pyrol. 94 (2012) 91-98.
DOI URL |
| [10] |
Z. Jiang, R. Song, W. Bi, J. Lu, T. Tang, Carbon 45 (2007) 449-458.
DOI URL |
| [11] |
J. Zhang, J. Du, Y. Qian, S. Xiong, Mater. Res. Bull. 45 (2010) 15-20.
DOI URL |
| [12] |
Y. Zheng, H. Zhang, S. Ge, J. Song, J. Wang, S. Zhang, Nanomaterials 8 (2018) 556.
DOI URL |
| [13] |
J.C. Acomb, C. Wu, P.T. Williams, Appl. Catal. B-Environ. 180 (2016) 497-510.
DOI URL |
| [14] |
D. Yao, C. Wu, H. Yang, Y. Zhang, M.A. Nahil, Y. Chen, P.T. Williams, H. Chen, Energ. Convers. Manage. 148 (2017) 692-700.
DOI URL |
| [15] |
D. Yao, Y. Zhang, P.T. Williams, H. Yang, H. Chen, Appl. Catal. B-Environ. 221 (2018) 584-597.
DOI URL |
| [16] |
X. Liu, Y. Zhang, M.A. Nahil, P.T. Williams, C. Wu, J. Anal. Appl. Pyrol. 125 (2017) 32-39.
DOI URL |
| [17] |
J. Gong, J. Liu, Z. Jiang, J. Feng, X. Chen, L. Wang, E. Mijowska, X. Wen, T. Tang, Appl. Catal. B-Environ. 147 (2014) 592-601.
DOI URL |
| [18] |
J. Gong, J. Feng, J. Liu, Z. Jiang, X. Chen, E. Mijowska, X. Wen, T. Tang, Chem. Eng. J. 248 (2014) 27-40.
DOI URL |
| [19] |
J.C. Acomb, C. Wu, P.T. Williams, Appl. Catal. B-Environ. 147 (2014) 571-584.
DOI URL |
| [20] |
C. Wu, M.A. Nahil, J. Huang, P.T. Williams, Process Saf. Environ. 103 (2016) 107-114.
DOI URL |
| [21] |
C. Wu, M. Nahil, A.N. Miskolczi, J. Huang, P.T. Williams, Environ. Sci. Technol. 48 (2014) 819-826.
DOI URL |
| [22] | J. Cui, S. Tan, R. Song, J. Appl. Polym. Sci. 134 (2016) 4 4647-4 4659. |
| [23] |
J.A. Delgado, C. Claver, S. Castillón, D. Curulla-Ferré, V.V. Ordomsky, C. Godard, Appl. Catal. A-Gen. 513 (2016) 39-46.
DOI URL |
| [24] |
S. Mourdikoudis, L.M. Liz-Marzán, Chem. Mater. 25 (2013) 1465-1476.
DOI URL |
| [25] |
J. Wang, Z. Huang, L. Lu, Q. Jia, L. Huang, S. Chang, M. Zhang, Z. Zhang, S. Li, D. He, W. Wu, S. Zhang, N. Toshima, H. Zhang, Green Chem 22 (2020) 1269-1274.
DOI URL |
| [26] | C. Jiao, Z. Huang, X. Wang, H. Zhang, L. Lu, S. Zhang, RSC Adv. 5 (2015) 34364-34371. |
| [27] |
J. Zhu, J. Jia, F.L. Kwong, D.H.L. Ng, S.C. Tjong, Biomass Bioenerg 36 (2012) 12-19.
DOI URL |
| [28] |
J. Kong, A. Cassel, H. Dai, Chem. Phys. Lett. 292 (1998) 567-574.
DOI URL |
| [29] |
S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Chem. Phys. Lett. 360 (2002) 229-234.
DOI URL |
| [30] |
Y. Tian, Z. Hu, Y. Yang, X. Wang, X. Chen, H. Xu, Q. Wu, W. Ji, Y. Chen, J. Am. Chem. Soc. 126 (2003) 1180-1183.
DOI URL |
| [31] | M. Schrope, Nature 466 (2010) 6 80-6 84. |
| [32] |
S.B. Joye, Science 349 (2015) 592-593.
DOI URL |
| [33] |
J.H. Lee, S.J. Park, Carbon 163 (2020) 1-18.
DOI URL |
| [34] | H. Liu, B. Geng, Y. Chen, H. Wang, A.C.S. Sustain, Chem. Eng. 5 (2017) 49-66. |
| [35] |
S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutiérrez, del F.Monte, Chem. Soc. Rev. 42 (2013) 794-830.
DOI PMID |
| [36] |
B. Wang, W. Liang, Z. Guo, W. Liu, Chem. Soc. Rev. 44 (2015) 336-361.
DOI PMID |
| [37] | Y. Bi, L. Han, Y. Zheng, Y. Guan, H. Zhang, S. Ge, H. Wang, Q. Jia, Y. Zhang, S. Zhang, ACS Appl. Mater. Inter. 10 (2018) 27416-27423. |
| [38] |
X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Adv. Mater. 22 (2010) 617-621.
DOI |
| [39] |
A. Lamy-Mendes, R.F. Silva, L. Durães, J. Mater. Chem. A 6 (2018) 1340-1369.
DOI URL |
| [40] | L. Chen, R. Du, J. Zhang, T. Yi, J. Mater. Chem. A 3 (2015) 20547-20553. |
| [41] |
S. Kabiri, D.N. Tran, T. Altalhi, D. Losic, Carbon 80 (2014) 523-533.
DOI URL |
| [42] |
Y. Bi, H. Zhang, H. Wang, Q. Jia, S. Zhang, J. Eur. Ceram. Soc. 40 (2020) 2106-2112.
DOI URL |
| [43] |
H. Sun, Z. Xu, C. Gao, Adv. Mater. 25 (2013) 2554-2560.
DOI URL |
| [44] |
W. Wan, R. Zhang, W. Li, H. Liu, Y. Lin, L. Li, Y. Zhou, Environ. Sci. Nano 3 (2016) 107-113.
DOI URL |
| [45] |
W. Wan, F. Zhang, S. Yu, R. Zhang, Y. Zhou, New J. Chem. 40 (2016) 3040-3046.
DOI URL |
| [46] | Y. Zhao, C.G. Hu, Y. Hu, H.H. Cheng, G.Q. Shi, L.T. Qu, Angew. Chem. Int. Edit. 124 (2012) 11531-11537. |
| [47] |
E. Garcia-Bordeje, S. Víctor-Román, O. Sanahuja-Parejo, A.M. Benito, W.K. Maser, Nanoscale 10 (2018) 3526-3539.
DOI URL |
| [48] |
S.Y. Gao, X.G. Li, L.Y. Li, X.J. Wei, Nano Energy 33 (2017) 334-342.
DOI URL |
| [49] |
P. Song, J. Cui, J. Di, D. Liu, M. Xu, B. Tang, Q. Zeng, J. Xiong, C. Wang, Q. He, L. Kang, J. Zhou, R. Duan, B. Chen, S. Guo, F. Liu, J. Shen, Z. Liu, ACS Nano 14 (2020) 595-602.
DOI PMID |
| [50] |
Z.Y. Wu, C. Li, H.W. Liang, J.F. Chen, S.H. Yu, Angew. Chem. Int. Edit. 52 (2013) 2925-2929.
DOI URL |
| [51] |
W. Chen, L. Yan, Nanoscale 3 (2011) 3132-3137.
DOI URL |
| [52] |
H. Bi, Z. Yin, X. Cao, X. Xie, C. Tan, X. Huang, B. Chen, F. Chen, Q. Yang, X. Bu, X. Lu, L. Sun, H. Zhang, Adv. Mater. 25 (2013) 5916-5921.
DOI URL |
| [53] |
D.D. Nguyen, N.H. Tai, S.B. Lee, W.S. Kuo, Energ. Environ. Sci. 5 (2012) 7908-7912.
DOI URL |
| [54] | J.P. Zhao, W.C. Ren, H.M. Cheng, J. Mater. Chem. 22 (2012) 20197-20202. |
| [55] |
D.P. Hashim, N.T. Narayanan, J.M. Romo-Herrera, D.A. Cullen, M.G. Hahm, P. Lezzi, J.R. Suttle, D. Kelkhoff, E. Muñoz-Sandoval, S. Ganguli, A.K. Roy, D.J. Smith, B.G.Sumpter R.Vajtai, V. Meunier, H. Terrones, M. Terrones, P.M. Ajayan, Sci. Rep. 2 (2012) 363-370.
DOI URL |
| [56] | H. Guan, Z.Y. Cheng, X.Q. Wang, ACS Nano 12 (2018) 10365-10373. |
| [57] | X. Dong, J. Chen, Y. Ma, J. Wang, M.B. Chan-Park, X. Liu, L. Wang, W. Huang, P. Chen, Chem. Commun. 48 (2012) 10660-10662. |
| [58] |
H.G. Zhu, D. Chen, W. An, N. Li, Q. Xu, H. Li, H. He, J. Lu, Small 11 (2015) 5222-5229.
DOI URL |
| [59] |
Z.Q. Niu, J. Chen, H.H. Hng, J. Ma, X.D. Chen, Adv. Mater. 24 (2012) 4144-4150.
DOI URL |
| [60] |
L. Shi, K. Chen, R. Du, A. Bachmatiuk, M.H. Rümmeli, K. Xie, Y. Huang, Y. Zhang, Z. Liu, J. Am. Chem. Soc. 138 (2016) 6360-6363.
DOI URL |
| [1] | Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Guiying Lu, Li Ma, Xiangbo Li, Jian Hou. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators [J]. J. Mater. Sci. Technol., 2021, 80(0): 75-83. |
| [2] | Ying Lin, Jin Chen, Shian Dong, Guangning Wu, Pingkai Jiang, Xingyi Huang. Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites [J]. J. Mater. Sci. Technol., 2021, 83(0): 219-227. |
| [3] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
| [4] | Lei Su, Min Niu, De Lu, Zhixin Cai, Mingzhu Li, Hongjie Wang. A review on the emerging resilient and multifunctional ceramic aerogels [J]. J. Mater. Sci. Technol., 2021, 75(0): 1-13. |
| [5] | Feng Zhang, Jia Sun, Yonggang Zheng, Peng-Xiang Hou, Chang Liu, Min Cheng, Xin Li, Hui-Ming Cheng, Zhen Chen. The importance of H2 in the controlled growth of semiconducting single-wall carbon nanotubes [J]. J. Mater. Sci. Technol., 2020, 54(0): 105-111. |
| [6] | X.X. Zhang, J.F. Zhang, Z.Y. Liu, W.M. Gan, M. Hofmann, H. Andrä, B.L. Xiao, Z.Y. Ma. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54(0): 58-68. |
| [7] | Zhi Yang, Jian Li, Xiaojing Xu, Shengyang Pang, Chenglong Hu, Penglei Guo, Sufang Tang, Hui-Ming Cheng. Synthesis of monolithic carbon aerogels with high mechanical strength via ambient pressure drying without solvent exchange [J]. J. Mater. Sci. Technol., 2020, 50(0): 66-74. |
| [8] | Jin Li, Qin Wang, Lei Zheng, Hongbo Liu. A novel graphene aerogel synthesized from cellulose with high performance for removing MB in water [J]. J. Mater. Sci. Technol., 2020, 41(0): 68-75. |
| [9] | Xing Zhou, Jian Su, Chenxi Wang, Changqing Fang, Xinyu He, Wanqing Lei, Chaoqun Zhang, Zhigang Huang. Design, preparation and measurement of protein/CNTs hybrids: A concise review [J]. J. Mater. Sci. Technol., 2020, 46(0): 74-87. |
| [10] | Xian Yue, Junhui Xiang, Junyong Chen, Huaxin Li, Yunsheng Qiu, Xianbo Yu. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization [J]. J. Mater. Sci. Technol., 2020, 47(0): 223-230. |
| [11] | Chuang Liu, Fanxin Zeng, Li Xu, Shuangyu Liu, Jincheng Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 81-88. |
| [12] | Jennifer A. Rudd, Cathren E. Gowenlock, Virginia Gomez, Ewa Kazimierska, Abdullah M. Al-Enizi, Enrico Andreoli, Andrew R. Barron. Solvent-free microwave-assisted synthesis of tenorite nanoparticle-decorated multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2019, 35(6): 1121-1127. |
| [13] | Juan Du, Lei Liu, Yifeng Yu, Yue Zhang, Haijun Lv, Aibing Chen. N-doped ordered mesoporous carbon spheres derived by confined pyrolysis for high supercapacitor performance [J]. J. Mater. Sci. Technol., 2019, 35(10): 2178-2186. |
| [14] | Thirupathi Boningari, Siva Nagi Reddy Inturi, Makram Suidan, Panagiotis G.Smirniotis. Novel continuous single-step synthesis of nitrogen-modified TiO2 by flame spray pyrolysis for photocatalytic degradation of phenol in visible light [J]. J. Mater. Sci. Technol., 2018, 34(9): 1494-1502. |
| [15] | Yang Hu, Runjian Jiang, Jingbao Zhang, Chengsong Zhang, Guodong Cui. Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(5): 886-890. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
