J. Mater. Sci. Technol. ›› 2021, Vol. 94: 247-263.DOI: 10.1016/j.jmst.2021.04.018
• Research Article • Previous Articles Next Articles
M. Gao, T.J. Chen*(
), Z.X. Zhang
Received:2021-02-19
Revised:2021-04-07
Accepted:2021-04-14
Published:2021-05-24
Online:2021-05-24
Contact:
T.J. Chen
About author:*E-mail address: chentj1971@126.com (T.J. Chen).M. Gao, T.J. Chen, Z.X. Zhang. Formation of TiAlSi intermetallics during heating Ti-A356 Al mixed powder compact at semisolid temperature[J]. J. Mater. Sci. Technol., 2021, 94: 247-263.
| Phase | Space Group | a(Å) | b(Å) | c(Å) | α | β | γ |
|---|---|---|---|---|---|---|---|
| τ1 | I41/amd(141) | 3.57 | 3.57 | 27.15 | 90° | 90° | 90° |
| τ2 (C49 TiSi2) | Cmcm(63) | 3.61 | 13.77 | 3.65 | 90° | 90° | 90° |
Table 1 Crystallographic data of τ1 and C49 TiSi2 crystals.
| Phase | Space Group | a(Å) | b(Å) | c(Å) | α | β | γ |
|---|---|---|---|---|---|---|---|
| τ1 | I41/amd(141) | 3.57 | 3.57 | 27.15 | 90° | 90° | 90° |
| τ2 (C49 TiSi2) | Cmcm(63) | 3.61 | 13.77 | 3.65 | 90° | 90° | 90° |
Fig. 1. SEM micrographs of the powder mixture compact heated at 595 °C for different durations: (a) 15 min; (b) 35 min; (c) 3 h; (d) 36 h. The inserts are the typical microstructures of one reinforcing particulate, and the regions marked with red rectangular are the sampling positions of TEM foils.
Fig. 2. SEM images of the reaction product in the specimen heated at 595 °C for different durations: (a-a2) 15 min; (b-b2) 35 min; (c-c2) 3 h; (d-d2) 36 h. The first column images display the whole morphologies of the reaction product, the second column display the morphologies of the inner compact structure, and the third column display the morphologies of the outer jagged structure.
Fig. 4. TEM analysis results of the specimen heated at 595 °C for 15 min: (a) Bright-field TEM image; (b) and (c) HRTEM images of the area marked by arrows b and c in (a) respectively, inserts are corresponding FFT patterns; (d) Magnified image of the area labeled by red box in (a); (e) HRTEM image of the plate marked by arrow e in (d); (f) Mixed images of HAADF image and EDS mappings of Al and Si of the area A labeled in (d), white arrows indicate SFs; (g) FFT pattern of the area labeled in (e); (h)-(j) SAED patterns obtained from the area labeled by red circle in (a).
Fig. 5. TEM results of the specimen heated for 35min: (a) Bright-field TEM image; (b) Magnified bright-field image of particle A marked in (a); (c)-(e) SAED patterns obtained from the area labeled in (a).
Fig. 6. TEM results of the specimen heated at 595 °C for 3 h: (a) Bright-field TEM image of the specimen; (b)-(c) Mixed images of HAADF image and EDS mappings of Al and Si of the area labeled in (a); (d)-(f) SAED patterns obtained from the area labeled by red circle in (a); (g) Magnified bright-field image of the particle B marked in (a), insert is the corresponding SAED patterns.
Fig. 7. TEM analysis results of the region labeled red box in Fig. 6g: (a) HRTEM image; (b) and (c) Magnified HRTEM images of the regions labeled by A and B in (a) respectively; (b1) and (b2) FFT patterns of the regions b1 and b2 labeled in (b); (b1’) and (b2’) Theoretical diffraction patterns of τ2 along [100] and [001] zone axis respectively; (c1) FFT pattern of region c1 labeled in (c); (c1’) Theoretical diffraction patterns of τ1 along [010] zone axis.
Fig. 8. TEM results of the specimen heated for 36h: (a) Bright-field TEM image of the sample; (b)-(d) SAED patterns obtained from the area labeled in (a).
| Heating duration | Phase | Chemical composition (at.%) | Al/Si ratio | ||
|---|---|---|---|---|---|
| Ti | Al | Si | |||
| 15min | τ1 | 31.35 ± 1.57 | 9.62 ± 0.48 | 59.03 ± 2.95 | 0.16 ± 0.02 |
| τ2 | 29.25 ± 1.46 | 13.52 ± 0.68 | 57.23 ± 2.86 | 0.24 ± 0.02 | |
| 35min | τ1 | 32.79 ± 1.64 | 9.78 ± 0.49 | 57.43 ± 2.87 | 0.17 ± 0.02 |
| τ2 | 32.96 ± 1.65 | 12.35 ± 0.62 | 54.70 ± 2.74 | 0.23 ± 0.02 | |
| 3h | τ1 | 34.00 ± 1.70 | 8.81 ± 0.44 | 57.20 ± 2.86 | 0.15 ± 0.02 |
| τ2 | 32.22 ± 1.61 | 10.71 ± 0.54 | 57.07 ± 2.85 | 0.19 ± 0.02 | |
| 36h | τ1 | 33.67 ± 1.68 | 9.31 ± 0.47 | 57.01 ± 2.85 | 0.16 ± 0.02 |
| τ2 | - | - | - | - |
Table 2 Chemical compositions of τ1 and τ2 phases in the specimens heated for different durations obtained by TEM-EDS measurements.
| Heating duration | Phase | Chemical composition (at.%) | Al/Si ratio | ||
|---|---|---|---|---|---|
| Ti | Al | Si | |||
| 15min | τ1 | 31.35 ± 1.57 | 9.62 ± 0.48 | 59.03 ± 2.95 | 0.16 ± 0.02 |
| τ2 | 29.25 ± 1.46 | 13.52 ± 0.68 | 57.23 ± 2.86 | 0.24 ± 0.02 | |
| 35min | τ1 | 32.79 ± 1.64 | 9.78 ± 0.49 | 57.43 ± 2.87 | 0.17 ± 0.02 |
| τ2 | 32.96 ± 1.65 | 12.35 ± 0.62 | 54.70 ± 2.74 | 0.23 ± 0.02 | |
| 3h | τ1 | 34.00 ± 1.70 | 8.81 ± 0.44 | 57.20 ± 2.86 | 0.15 ± 0.02 |
| τ2 | 32.22 ± 1.61 | 10.71 ± 0.54 | 57.07 ± 2.85 | 0.19 ± 0.02 | |
| 36h | τ1 | 33.67 ± 1.68 | 9.31 ± 0.47 | 57.01 ± 2.85 | 0.16 ± 0.02 |
| τ2 | - | - | - | - |
Fig. 10. Schematic diagrams of the morphologies of τ1 and τ2 crystals: (a) Morphology of τ1 crystal predicted by BFDH method; (a1) Cross-section of τ1 crystal along (010) plane; (a2) Cross-section of τ1 crystal along (100) plane; (b) Morphology of τ2 crystal predicted by BFDH method; (b1) Cross-section of τ2 crystal along (100) plane; (b2) Cross-section of τ1 crystal along (001) plane.
| Crystal | hkl | d-Spacing | Multiplicity | Distance | Area% | Aspect ratio |
|---|---|---|---|---|---|---|
| τ1 | {004} | 6.788 | 2 | 14.733 | 23.150 | 2.738 |
| {101} | 3.540 | 8 | 28.252 | 6.713 |
Table 3 Crystal parameters of τ1 crystal predicted via BFDH method.
| Crystal | hkl | d-Spacing | Multiplicity | Distance | Area% | Aspect ratio |
|---|---|---|---|---|---|---|
| τ1 | {004} | 6.788 | 2 | 14.733 | 23.150 | 2.738 |
| {101} | 3.540 | 8 | 28.252 | 6.713 |
| Crystal | hkl | d-Spacing | Multiplicity | Distance | Area% | Aspect ratio |
|---|---|---|---|---|---|---|
| τ2 | {020} | 6.885 | 2 | 14.524 | 22.212 | 2.852 |
| {110} | 3.492 | 4 | 28.637 | 6.464 | ||
| {021} | 3.225 | 4 | 31.009 | 6.172 | ||
| {111} | 2.523 | 8 | 39.632 | 0.629 |
Table 4 Crystal parameters of τ2 crystal predicted via BFDH method.
| Crystal | hkl | d-Spacing | Multiplicity | Distance | Area% | Aspect ratio |
|---|---|---|---|---|---|---|
| τ2 | {020} | 6.885 | 2 | 14.524 | 22.212 | 2.852 |
| {110} | 3.492 | 4 | 28.637 | 6.464 | ||
| {021} | 3.225 | 4 | 31.009 | 6.172 | ||
| {111} | 2.523 | 8 | 39.632 | 0.629 |
Fig. 11. TEM results of Ti/A356 powers interface in the specimen heated at 595 °C for 15 min: (a) HAADF image of a local area on the specimen shown in Fig. 4a; (b) and (c) EDS mapping of the Mg and O elemental distribution; (d) Bright-field TEM image of the area marked in (a); (e)-(f) HRTEM images of Film B and Film A marked in (d), inserts are corresponding FFT patterns.
Fig. 12. Schematic of different structures: (a) Structure model of C49 TiSi2; (b) Arrangement of C49 TiSi2 along [100] zone axis; (c) Formation mechanism of C49 TiSi2 along [001]; (d) Structure model of τ1; (e) Arrangement of τ1 along [010] zone axis; (f) Formation mechanism of τ1 along [010] zone axis.
Fig. 16. Schematic for formation process of reaction products during heating of Ti-A356 mixed powder compact at 595 °C. (a) Local breakage of Al2O3/TiO2 dual-layered oxide film; (b) Dissolution of Ti powder and precipitation of τ1 and τ2 crystals; (c) Formation of reaction products with two morphologies; (d) Growth and coarsening of τ1 and τ2 crystals; (e) Coarsening of large τ1 crystals by exhausting the small τ2 crystals in the inner compact structure; (f) Formation of large τ1 plate agglomerate.
| [1] |
X.G. Chen, M. Fortier, J. Mater. Proc. Technol. 210 (2010) 1780-1786.
DOI URL |
| [2] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
| [3] |
Y. Li, B. Hu, Q. Gu, B. Liu, Q. Li, Scripta Mater. 160 (2019) 75-80.
DOI URL |
| [4] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
| [5] |
D. Qiu, J. Taylor, M. Zhang, P. Kelly, Acta Mater. 55 (2007) 1447-1456.
DOI URL |
| [6] |
Y. Li, Q.F. Gu, Q. Luo, Y. Pang, S.L. Chen, K.C. Chou, X.L. Wang, Q. Li, Mater. Des. 102 (2016) 78-90.
DOI URL |
| [7] | S. Ma, N. Li, C. Zhang, X. Wang, J. Alloys Compd. 831 (2020) 154872. |
| [8] |
Z. Liu, N. Cheng, Q. Zheng, J. Wu, Q. Han, Z. Huang, J. Xing, Y. Li, Y. Gao, Mater. Sci. Eng. A 710 (2018) 392-399.
DOI URL |
| [9] |
T. Chen, H. Qin, X. Zhang, J. Mater. Sci. 53 (2018) 2576-2593.
DOI URL |
| [10] | J.Y. Zhang, T.J. Chen, X.Z. Zhang, M. Gao, L.B. Geng, J. Alloys Compd. 842 (2020) 155765. |
| [11] |
B. Guo, S. Ni, R. Shen, M. Song, Mater. Sci. Eng. A 639 (2015) 269-273.
DOI URL |
| [12] |
Y.J. Wang, T.J. Chen, S.Q. Zhang, Y.H. Qin, X.Z. Zhang, Mater. Trans. 57 (2016) 1124-1133.
DOI URL |
| [13] |
Q. Zhang, B. Xiao, W. Wang, Z. Ma, Acta Mater. 60 (2012) 7090-7103.
DOI URL |
| [14] |
R. Ghomashchi, J. Alloys compd. 537 (2012) 255-260.
DOI URL |
| [15] |
S. Liu, F. Weitzer, J.C. Schuster, N. Krendelsberger, Y. Du, Int. J. Mater. Res. 99 (2008) 705-711.
DOI URL |
| [16] |
O. Dezellus, B. Gardiola, J. Andrieux, M. Lomello-Tafin, J. Viala, J. Phase Equilib. Diff. 35 (2014) 137-145.
DOI URL |
| [17] |
Z. Li, C. Liao, Y. Liu, X. Wang, Y. Wu, M. Zhao, Z. Long, F. Yin, J. Phase Equilib. Diff. 35 (2014) 564-574.
DOI URL |
| [18] | P. Perrot, in: Chapter in Landolt-Bernstein New Series IV, 11A4, 2006, pp. 1-15. |
| [19] |
Q. Luo, Q. Li, J.Y. Zhang, S.L. Chen, K.C. Chou, J. Alloys Compd. 602 (2014) 58-65.
DOI URL |
| [20] | A. Raman, K. Schubert, Zeitschrift fuer Metallkunde 56 (1965) 44-52. |
| [21] |
M. Pani, P. Manfrinetti, M.L. Fornasini, Acta Crystallogr., Sect. C 51 (1995) 1725-1728.
DOI URL |
| [22] | V. Kopylova, T. Nazarchuk, Ind. Lab.(U. S. S. R.) 43 (1977) 4 85-4 87. |
| [23] |
T. Gao, G. Liu, X. Liu, Mater. Charact. 95 (2014) 285-290.
DOI URL |
| [24] |
X. Zhang, T. Hu, J.F. Rufner, T.B. LaGrange, G.H. Campbell, E.J. Lavernia, J.M. Schoenung, K. van Benthem, Acta Mater. 95 (2015) 254-263.
DOI URL |
| [25] | P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) 864-871. |
| [26] | P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979. |
| [27] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
PMID |
| [28] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
| [29] |
L. Meli, P.F. Green, ACS Nano 2 (2008) 1305-1312.
DOI URL |
| [30] | I. Mazilkin, K. Tsoy, A. Straumal, A. Rodin, B. Baretzky, Mater. Lett. 272 (2020) 127730. |
| [31] |
I. Konyashin, F. Lachmann, B. Ries, A.A. Mazilkin, B.B. Straumal, C. Kübel, L. Llanes, B. Baretzky, Scripta Mater. 83 (2014) 17-20.
DOI URL |
| [32] |
S.H. Chen, L.Q. Li, Y.B. Chen, D.J. Liu, Trans. Nonferr. Met. Soc. China 20 (2010) 64-70.
DOI URL |
| [33] |
B. Jiang, C. Chen, X. Wang, H. Wang, W. Wang, H. Ye, K. Du, Acta Mater. 165 (2019) 459-470.
DOI URL |
| [34] |
H. Feng, Y. Zhou, D. Jia, Q. Meng, Scripta Mater. 55 (2006) 667-670.
DOI URL |
| [35] |
F.La Via, M. Grimaldi, D. Migas, L. Miglio, Appl. Phys. Lett. 78 (2001) 739-741.
DOI URL |
| [36] |
A. Bourret, F. Heurle, F.Le Goues, A. Charai, J. Appl. Phys. 67 (1990) 241-246.
DOI URL |
| [37] |
H.M. Shim, K.K. Koo, Cryst. Growth Des. 14 (2014) 1802-1810.
DOI URL |
| [38] |
R. Docherty, G. Clydesdale, K. Roberts, P. Bennema, J. Phys. D 24 (1991) 89-99.
DOI URL |
| [39] |
S. Goel, N. Sinha, H. Yadav, B. Kumar, Phys. E 106 (2019) 291-297.
DOI URL |
| [40] |
A. Kimura, K. Kondoh, M. Shibata, R. Watanabe, Mater. Trans. 42 (2001) 1373-1379.
DOI URL |
| [41] |
E. Effah, P. Bianco, P. Ducheyne, J. Biomed. Mater. Res. 29 (1995) 73-80.
DOI URL |
| [42] |
G. Xie, O. Ohashi, N. Yamaguchi, J. Mater. Res. 19 (2004) 815-819.
DOI URL |
| [43] |
G. Xie, O. Ohashi, T. Sato, N. Yamaguchi, M. Song, K. Mitsuishi, K. Furuya, Mater. Trans. 45 (2004) 904-909.
DOI URL |
| [44] |
W. Weimin, F. Zhengyi, W. Hao, Y. Runzhang, J. Mater. Proc. Technol. 128 (2002) 162-168.
DOI URL |
| [45] |
R. Lumley, T. Sercombe, G. Schaffer, Metall. Mater. Trans. A 30 (1999) 457-463.
DOI URL |
| [46] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
| [47] | Q. Luo, C. Zhai, Q. Gu, W. Zhu, Q. Li, J. Alloys Compd. 814 (2020) 152297. |
| [48] |
J. Gröbner, D. Mirković, R. Schmid-Fetzer, Mater. Sci. Eng. A 395 (2005) 10-21.
DOI URL |
| [49] |
X. Chen, J. Yan, F. Gao, J. Wei, Z. Xu, G. Fan, Ultrason. Sonochem. 20 (1) (2013) 144-154.
DOI URL |
| [50] |
T. Chou, C. Wong, K.N. Tu, J. Appl. Phys. 62 (1987) 2275-2279.
DOI URL |
| [51] | V. Arkady, Krasheninnikov, Nat. Mater. 17 (2018) 757-758. |
| [52] |
S. Zhao, G.M. Stocks, Y. Zhang, Acta Mater. 134 (2017) 334-345.
DOI URL |
| [53] |
P. Nandwana, N. Gupta, S.G. Srinivasan, R. Banerjee, Comp. Mater. Sci. 150 (2018) 197-201.
DOI URL |
| [54] |
A. Antonelli, J.F. Justo, A. Fazzio, Phys. Rev. B 60 (7) (1999) 4711-4714.
DOI URL |
| [55] |
L. Balogh, T. Ungár, Y. Zhao, Y. Zhu, Z. Horita, C. Xu, T.G. Langdon, Acta Mater. 56 (2008) 809-820.
DOI URL |
| [56] |
T.A. Kuhr, J. Liu, H.J. Chung, M. Skowronski, F. Szmulowicz, J. Appl. Phys. 92 (2002) 5863-5871.
DOI URL |
| [57] |
W.Y. Wang, B. Tang, S.L. Shang, J. Wang, S. Li, Y. Wang, J. Zhu, S. Wei, J. Wang, K.A. Darling, Acta Mater. 170 (2019) 231-239.
DOI URL |
| [58] | C. Colinet, W. Wolf, R. Podloucky, A. Pasturel, Appl. Phys. Lett. 87 (2005) 041910. |
| [59] |
N.B. Ming, K. Tsukamoto, I. Sunagawa, A. Chernov, J. Cryst. Growth 91 (1988) 11-19.
DOI URL |
| [60] |
H. Li, X.D. Peng, N.B. Ming, J. Cryst. Growth 139 (1994) 129-133.
DOI URL |
| [61] |
D.X. Wei, Y. Koizumi, M. Nagasako, A. Chiba, Acta Mater 125 (2017) 81-97.
DOI URL |
| [62] |
H. Feng, Y. Zhou, D. Jia, Q. Meng, J. Rao, Cryst. Growth Des. 6 (2006) 1626-1630.
DOI URL |
| [63] |
T. Nakano, Y. Omomoto, K. Hagihara, Y. Umakoshi, Scripta Mater. 48 (2003) 1307-1312.
DOI URL |
| [64] |
S. Zghal, M. Thomas, A. Couret, Intermetallics 13 (9) (2005) 1008-1013.
DOI URL |
| [65] |
E. Polatidis, N. Zotov, E. Bischoff, E.J. Mittemeijer, Metall. Mater. Trans. A 48 (2017) 5304-5316.
DOI URL |
| [66] |
E. Leite, T. Giraldi, F. Pontes, E. Longo, A. Beltran, J. Andres, Appl. Phys. Lett. 83 (2003) 1566-1568.
DOI URL |
| [67] |
M. Perez, Scripta Mater. 52 (2005) 709-712.
DOI URL |
| [68] |
B. Liu, H.C. Zeng, Small 1 (2005) 566-571.
DOI URL |
| [69] | G. Madras, B.J. McCoy, Cryst.Growth Des. 3 (2003) 981-990. |
| [1] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
| [2] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
| [3] | Weidan Ma, Jun Zhang, Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates [J]. J. Mater. Sci. Technol., 2021, 65(0): 89-98. |
| [4] | Jinhu Zhang, Xuexiong Li, Dongsheng Xu, Chunyu Teng, Hao Wang, Liang Yang, Hongtao Ju, Haisheng Xu, Zhichao Meng, Yingjie Ma, Yunzhi Wang, Rui Yang. Phase field simulation of the stress-induced α microstructure in Ti-6Al-4 V alloy and its CPFEM properties evaluation [J]. J. Mater. Sci. Technol., 2021, 90(0): 168-182. |
| [5] | Shuqun Chen, Jinshu Wang, Ronghai Wu, Zheng Wang, Yangzhong Li, Yiwen Lu, Wenyuan Zhou, Peng Hu, Hongyi Li. Insights into the nucleation, grain growth and phase transformation behaviours of sputtered metastable β-W films [J]. J. Mater. Sci. Technol., 2021, 90(0): 66-75. |
| [6] | Yuliang Zhao, Weiwen Zhang, Dongfu Song, Bo Lin, Fanghua Shen, Donghai Zheng, ChunXiao Xie, Zhenzhong Sun, Yanan Fu, Runxia Li. Nucleation and growth of Fe-rich phases in Al-5Ti-1B modified Al-Fe alloys investigated using synchrotron X-ray imaging and electron microscopy [J]. J. Mater. Sci. Technol., 2021, 80(0): 84-99. |
| [7] | Ziyan Zhao, Juan Mu, Haifeng Zhang, Yandong Wang, Yang Ren. Oxygen addition for improving the strength and plasticity of TiZr-based amorphous alloy composites [J]. J. Mater. Sci. Technol., 2021, 79(0): 212-221. |
| [8] | Yuyu Wei, Ping Lu, Chenxi Zhu, Kunpeng Zhao, Xun Shi, Lidong Chen, Fangfang Xu. Nano-scale compositional oscillation and phase intergrowth in Cu2S0.5Se0.5 and their role in thermal transport [J]. J. Mater. Sci. Technol., 2021, 79(0): 222-229. |
| [9] | Di Wan, Yan Ma, Binhan Sun, Seyed Mohammad Javad Razavi, Dong Wang, Xu Lu, Wenwen Song. Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope [J]. J. Mater. Sci. Technol., 2021, 85(0): 30-43. |
| [10] | Conghui Zhang, Xiangkang Zeng, Jiapeng Cheng, Yaomian Wang. Fatigue life improvement and grain growth of gradient nanostructured industrial zirconium during high cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 87(0): 101-107. |
| [11] | Haifang Liu, Haijun Su, Zhonglin Shen, Di Zhao, Yuan Liu, Yinuo Guo, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 218-223. |
| [12] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
| [13] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
| [14] | P.F. Zou, C.H. Zheng, L. Hu, H.P. Wang. Rapid Growth of TiNi intermetallic compound within undercooled Ti50Ni50 alloy under electrostatic levitation condition [J]. J. Mater. Sci. Technol., 2021, 77(0): 82-89. |
| [15] | Xuanwei Zhao, Xianming Zheng, Xiaohua Luo, Fei Gao, Hai Zeng, Guang Yu, Sajjad Ur Rehman, Changcai Chen, Shengcan Ma, Weijun Ren, Zhenchen Zhong. Large magnetocaloric effect and magnetoresistance in ErNi single crystal [J]. J. Mater. Sci. Technol., 2021, 86(0): 56-63. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
