J. Mater. Sci. Technol. ›› 2021, Vol. 94: 264-274.DOI: 10.1016/j.jmst.2021.02.060
• Research Article • Previous Articles
Xi Lia, Zhongtao Lia, Zhenggang Wua,*(
), Shijun Zhaob,*(
), Weidong Zhanga,*(
), Hongbin Beic, Yanfei Gaod
Received:2021-01-03
Revised:2021-02-17
Accepted:2021-02-28
Published:2021-12-20
Online:2021-12-15
Contact:
Zhenggang Wu,Shijun Zhao,Weidong Zhang
About author:weidongzhang@hnu.edu.cn (W. Zhang).Xi Li, Zhongtao Li, Zhenggang Wu, Shijun Zhao, Weidong Zhang, Hongbin Bei, Yanfei Gao. Strengthening in Al-, Mo-or Ti-doped CoCrFeNi high entropy alloys: A parallel comparison[J]. J. Mater. Sci. Technol., 2021, 94: 264-274.
Fig. 1. X-ray diffraction patterns of CoCrFeNi alloy (a) and those doped with 4 at.% Al (b), Mo (c), and Ti (d) annealed at 800, 900, 1000 and 1100 °C for 1 hour following room temperature rolling.
Fig. 2. Back-scattered electron image of CoCrFeNi alloy (a) and those doped with 4 at.% Al (b), Mo (c), and Ti (d) annealed at 800, 900, 1000 and 1100 °C for 1 hour following room temperature rolling.
Fig. 3. TEM micrographs of the Co24Cr24Fe24Ni24Al4 (a), Co24Cr24Fe24Ni24Mo4 (b), and Co24Cr24Fe24Ni24Ti4 alloys (c); the insets in (b) and (c) present the SAED patterns of the corresponding observable particles; (d) HRTEM image of the particle present in the Co24Cr24Fe24Ni24Ti4 alloy.
Fig. 4. Representative engineering stress-strain curves of the CoCrFeNi alloy (a) and those doped with 4 at.% Al (b), Mo (c), and Ti (d) annealed at 800, 900, 1000 and 1100 °C for 1 hour following room temperature rolling.
Fig. 5. Hall-Petch plots showing the effects of grain size, d, on the yield strength, ${{\sigma }_{Y}}$, for the CoCrFeNi alloy and those doped with 4 at.% Al, Mo and Ti; the black and green open circles respectively indicate the 800 °C-and 900 °C-annealed Co24Cr24Fe24Ni24Mo4 and Co24Cr24Fe24Ni24Ti4 alloys; the closed squares correspond to those with additional annealing.
| σi (MPa) | kHP (MPa·µm-1/2) | σss (MPa) | σppt (800 °C, MPa) | σppt (900 °C, MPa) | |||
|---|---|---|---|---|---|---|---|
| σy-σy-HP | σOrowan | σy-σy-HP | σOrowan | ||||
| CoCrFeNi | 94.9 | 621.1 | 0 | - | - | - | - |
| CoCrFeNi-4%Al | 130.5 | 765.8 | 35.6 | - | - | - | - |
| CoCrFeNi-4%Mo | 238.7 | 623.6 | 143.8 | 171.5 | 221 | 72.5 | 51.6 |
| CoCrFeNi-4%Ti | 177.4 | 756.4 | 82.5 | 185.5 | 154.5 | 82 | 85.2 |
Table 1 Curve fitting values (σi and kHP in Eq. (1)), solid solution strengthening (σss) and precipitation strengthening (${{\sigma }_{ppt}}$) effects of the studied alloys.
| σi (MPa) | kHP (MPa·µm-1/2) | σss (MPa) | σppt (800 °C, MPa) | σppt (900 °C, MPa) | |||
|---|---|---|---|---|---|---|---|
| σy-σy-HP | σOrowan | σy-σy-HP | σOrowan | ||||
| CoCrFeNi | 94.9 | 621.1 | 0 | - | - | - | - |
| CoCrFeNi-4%Al | 130.5 | 765.8 | 35.6 | - | - | - | - |
| CoCrFeNi-4%Mo | 238.7 | 623.6 | 143.8 | 171.5 | 221 | 72.5 | 51.6 |
| CoCrFeNi-4%Ti | 177.4 | 756.4 | 82.5 | 185.5 | 154.5 | 82 | 85.2 |
Fig. 6. Relationships of (a) ${{\sigma }_{ss}}\sim {{\varepsilon }_{f}}$ and (b) ${{\sigma }_{ss}}\sim {{\varepsilon }_{l}}$, in which ${{\sigma }_{ss}}$ values are cited from Table 1. ${{\varepsilon }_{f}}$ and ${{\varepsilon }_{l}}$ represent the overall contributions from elastic misfit and were calculated using the atomic size misfit (${{\varepsilon }_{a}}$) and modulus mismatch (${{\varepsilon }_{G}}$).
Fig. 7. Predicted vs. experimental yield strength due to “dilute” doping of the CoCrFeNi alloy; the prediction was made using Eq. (1) by applying the dimensionless parameter f obtained from the linear relation in Fig. 5b to Eq. (3) and assuming a linear relation between kHP and doping concentration;.
| Co | Cr | Fe | Ni | Al | Mo | Ti | |
|---|---|---|---|---|---|---|---|
| Atomic radius (Å) | 1.251 | 1.249 | 1.241 | 1.246 | 1.432 | 1.363 | 1.462 |
| VEC | 9 | 6 | 8 | 10 | 3 | 6 | 4 |
Table 2 Atomic radii and valence electron count (VEC) for each element [76], [77], [79].
| Co | Cr | Fe | Ni | Al | Mo | Ti | |
|---|---|---|---|---|---|---|---|
| Atomic radius (Å) | 1.251 | 1.249 | 1.241 | 1.246 | 1.432 | 1.363 | 1.462 |
| VEC | 9 | 6 | 8 | 10 | 3 | 6 | 4 |
Fig. 8. Comparisons of the spin density distribution in one [110] plane in the stacking fault energy calculations based on the slab model. (a) shows the computational model, in which the red atom denotes the dopant element X, (b)-(d) shows the spin density distribution for Al, Ti, and Mo, respectively. The location of the dopants is indicated by the red arrow. The lower panels shows the spin density difference before and after the introduction of stacking fault. Charge accumulation is represented by red while depletion by green. An isovalue of 0.004 e/Å3 was used.
Fig. 9. Stacking fauly energies (SFEs), annealing twin densities (ρtwin) and kHP values of the CoCrFeNi, Co24Cr24Fe24Ni24Al4, Co24Cr24Fe24Ni24Mo4, and Co24Cr24Fe24Ni24Ti4 alloys. Noted first that the ρtwin was defined here as the number of twin boundary intercepts per unit length and second that the for the measurement of ρtwin, the 1000 °C (1 h)-annealed alloys were used since they exhibited similar grain sizes (36-42 μm) and ρtwin was found influenced by the grain size.
| [1] |
Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Intermetallics 46 (2014) 131-140.
DOI URL |
| [2] |
A. Gali, E.P. George, Intermetallics 39 (2013) 74-78.
DOI URL |
| [3] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tasu, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
| [4] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375- 377 (2004) 213-218. |
| [5] |
T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan, Y. Wang, Mater. Sci. Eng. A 648 (2015) 15-22.
DOI URL |
| [6] |
Y. Lv, R. Hu, Z. Yao, J. Chen, D. Xu, Y. Liu, X. Fan, Mater. Des. 132 (2017) 392-399.
DOI URL |
| [7] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Chao, T. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
| [8] |
P. Cui, Y. Ma, L. Zhang, M. Zhang, J. Fan, W. Dong, P. Yu, G. Li, R. Liu, Mater. Sci. Eng. A 737 (2018) 198-204.
DOI URL |
| [9] |
T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Sci. Eng. A 556 (2012) 170-174.
DOI URL |
| [10] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165 (2019) 228-240.
DOI |
| [11] |
W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater. 116 (2016) 332-342.
DOI URL |
| [12] |
G. Qin, R. Chen, H. Zheng, H. Fang, L. Wang, Y. Su, J. Guo, H. Fu, J. Mater. Sci. Technol. 35 (2019) 578-583.
DOI URL |
| [13] |
W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Intermetallics 60 (2015) 1-8.
DOI URL |
| [14] |
S. Vrtnik, S. Guo, S. Sheikh, A. Jelen, P. Koželj, J. Luzar, A. Kocjan, Z. Jagličić, A. Meden, H. Guim, H.J. Kim, J. Dolinšek, Intermetallics 93 (2018) 122-133.
DOI URL |
| [15] |
A. Verma, P. Tarate, A.C. Abhyankar, M.R. Mohape, D.S. Gowtam, Scr. Mater. 161 (2019) 28-31.
DOI URL |
| [16] |
H. Zheng, R. Chen, G. Qin, X. Li, Y. Su, J. Mater. Sci. Technol. 38 (2020) 19-27.
DOI URL |
| [17] |
E. Zhou, D. Qiao, Y. Yang, D. Xu, Y. Lu, J. Wang, J.A. Smith, H. Li, H. Zhao, P.K. Liaw, F. Wang, J. Mater. Sci. Technol. 46 (2020) 201-210.
DOI URL |
| [18] |
Z. Xu, Z. Li, Y. Tong, W. Zhang, Z. Wu, J. Mater. Sci. Technol. 60 (2021) 35-43.
DOI URL |
| [19] |
L.J. Zhang, M.D. Zhang, Z. Zhou, J.T. Fan, P. Cui, P.F. Yu, Q. Jing, M.Z. Ma, P.K. Liaw, Mater. Sci. Eng. A 725 (2018) 437-446.
DOI URL |
| [20] |
W. Huo, H. Zhou, F. Fang, X. Zhou, Z. Xie, J. Jiang, J. Alloys. Compd. 735 (2018) 897-904.
DOI URL |
| [21] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
| [22] |
H. Jiang, K. Han, D. Qiao, Y. Lu, Z. Cao, T. Li, Mater. Chem. Phys. 210 (2018) 43-48.
DOI URL |
| [23] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
| [24] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
PMID |
| [25] | P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979. |
| [26] |
P.J.H. Denteneer, J.M. Soler, Solid State Commun. 78 (1991) 857-861.
DOI URL |
| [27] | P.J.H. Denteneer, W. van Haeringen, J. Phys. C 20 (1987) L883-L887. |
| [28] |
J.M. Cowley, Phys. Rev. 138 (1965) A1384-A1389.
DOI URL |
| [29] |
J.M. Cowley, Phys. Rev. 77 (1950) 669-675.
DOI URL |
| [30] |
S. Zhao, G.M. Stocks, Y. Zhang, Acta Mater. 134 (2017) 334-345.
DOI URL |
| [31] |
S. Zhao, Y. Osetsky, G.M. Stocks, Y. Zhang, NPJ Comput. Mater. 5 (2019) 13.
DOI URL |
| [32] |
G. Liu, X. Xiao, M. Véron, S. Birosca, Acta Mater. 185 (2020) 493-506.
DOI URL |
| [33] |
F. Long, Y.S. Yoo, C.Y. Jo, S.M. Seo, Y.S. Song, T. Jin, Z.Q. Hu, Mater. Sci. Eng. A 527 (2009) 361-369.
DOI URL |
| [34] |
J.P. Shingledecker, G.M. Pharr, Metall. Mater.Trans. A 43 (2012) 1902-1910.
DOI URL |
| [35] |
F. Chen, Z. Chen, F. Mao, T. Wang, Z. Cao, Mater. Sci. Eng. A 625 (2015) 357-368.
DOI URL |
| [36] |
E.O. Hall, Proc. Phys. Soc. London B 64 (1951) 747-753.
DOI URL |
| [37] | N.J. Petch, J. Iron. Steel. Inst. 174 (1653) 25-28. |
| [38] | A.H. Cottrell, Dislocation and Plastic Flow in Crystals, Oxford University Press, Oxford, 1953. |
| [39] |
J.D. Eshelby, Acta Metall. 3 (1955) 4 87-4 90.
DOI URL |
| [40] |
A.W. Cochardt, G. Schoeck, H. Wiedersich, Acta Metall. 3 (1955) 533-537.
DOI URL |
| [41] |
G. Schoeck, A. Seeger, Acta Metall. 7 (1959) 469-477.
DOI URL |
| [42] |
N.F. Mott, F.R.N. Nabarro, Proc. Phys. Soc. 52 (1940) 86-89.
DOI URL |
| [43] |
A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. A 62 (1949) 49-62.
DOI URL |
| [44] | L.J. Dijkstra, J. Met. 1 (1949) 252-260. |
| [45] |
R.L. Fleischer, Acta Metall. 9 (1961) 996-1000.
DOI URL |
| [46] |
R.L. Fleischer, Acta Metall. 11 (1963) 203-209.
DOI URL |
| [47] | J. Friedel, International Series of Monographs on Solid State Physics, Pergamon Press, Oxford, 1964. |
| [48] |
A.J.E. Foreman, M.J. Makin, Philos Mag. 14 (1966) 911-924.
DOI URL |
| [49] |
U.F. Kocks, Philos. Mag. 13 (1966) 541-566.
DOI URL |
| [50] | R. Labusch, Phys. Stat. Sol. 41 (1970) 659-669. |
| [51] |
R. Labusch, Acta Metall. 20 (1972) 917-927.
DOI URL |
| [52] |
R. Labusch, J. Appl. Phys. 48 (1977) 4550-4556.
DOI URL |
| [53] |
C.R. Larosa, M. Shih, C. Varvenne, M. Ghazisaeidi, M. Shih, C. Varvenne, Mater. Charact. 151 (2019) 310-317.
DOI URL |
| [54] |
F.G. Coury, M. Kaufman, A. Clarke, Acta Mater. 175 (2019) 66-81.
DOI URL |
| [55] | I. Basu, J.Th.M.de Hosson, Scr.Mater. 187 (2020) 148-156. |
| [56] |
G.P.M. Leyson, W.A. Curtin, Philos. Mag. 93 (2013) 2428-2444.
DOI URL |
| [57] |
Z. Wu, Y. Gao, H. Bei, Acta Mater. 120 (2016) 108-119.
DOI URL |
| [58] |
I. Toda-Caraballo, Scr. Mater. 127 (2017) 113-117.
DOI URL |
| [59] |
I. Toda-Caraballo, P.E.J. Rivera-Diáz-Del-Castillo, Acta Mater. 85 (2015) 14-23.
DOI URL |
| [60] |
J. Wang, H. Yang, H. Huang, J. Ruan, S. Ji, J. Alloys. Compd. 798 (2019) 576-586.
DOI URL |
| [61] |
C. Varvenne, W.A. Curtin, Scr. Mater. 138 (2017) 92-95.
DOI URL |
| [62] |
D. Choudhuri, M. Komarasamy, V. Ageh, R.S. Mishra, Mater. Chem. Phys. 217 (2018) 308-314.
DOI URL |
| [63] |
S.G. Ma, S.F. Zhang, J.W. Qiao, Z.H. Wang, M.C. Gao, Z.M. Jiao, H.J. Yang, Y. Zhang, Intermetallics 54 (2014) 104-109.
DOI URL |
| [64] |
J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, J.Th.M. de Hosson, Acta Mater 131 (2017) 206-220.
DOI URL |
| [65] |
W. Wu, L. Guo, B. Guo, Y. Liu, M. Song, Mater. Sci. Eng. A 759 (2019) 574-582.
DOI URL |
| [66] | G.E. Dieter, Berlin, 1986. |
| [67] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Phenomena, Perga-mon Press, Oxford, 2004. |
| [68] | J. Garstone, R.W.K. Honeycombe, Dislocations and Mechanical Properties of Crystals, Wiley, New York, 1957. |
| [69] | W. Woo, M. Naeem, J.S. Jeong, C.M. Lee, S. Harjo, T. Kawasaki, H. He, X.L. Wang, Mater. Sci. Eng. A 781 (2020) 139-224. |
| [70] |
H. Parvin, M. Kazeminezhad, Comput. Mater. Sci. 95 (2014) 250-255.
DOI URL |
| [71] |
M. Huang, Z. Li, J. Mech. Phys. Solids 61 (2013) 2454-2472.
DOI URL |
| [72] |
F. He, Z. Wang, B. Han, Q. Wu, D. Chen, J. Li, J. Wang, C.T. Liu, J.J. Kai, J. Alloys. Compd. 769 (2018) 490-502.
DOI URL |
| [73] |
B. Cai, B. Liu, S. Kabra, Y. Wang, K. Yan, P.D. Lee, Y. Liu, Acta Mater 127 (2017) 471-480.
DOI URL |
| [74] | P. Yu, Y. Zhuang, J.P. Chou, J. Wei, Y.C. Lo, A. Hu, Sci. Rep. 9 (2019) 10940. |
| [75] | Y.F. Wen, J. Sun, J. Huang, H. Xing, Chin. J. Nonferrous. Met. 21 (2011) 1664-1667. |
| [76] |
S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. 21 (2011) 433-446.
DOI URL |
| [77] | http://www.webelements.com/ . |
| [79] |
O.N. Senkov, D.B. Miracle, Mater. Res. Bull. 36 (2001) 2183-2198.
DOI URL |
| S. Mahajan, C.S. Pande, M.A. Imam, B.B. Rath, Acta Mater. 45 (1997) 2633-2638. | |
| [80] |
Y.J. Zhang, D. Han, X.W. Li, Scr. Mater. 178 (2020) 269-273.
DOI URL |
| [81] |
Y. Jin, B. Lin, M. Bernacki, G.S. Rohrer, A.D. Rollett, N. Bozzolo, Mater. Sci. Eng. A 597 (2014) 295-303.
DOI URL |
| [82] |
S.V. Astafurov, G.G. Maier, E.V. Melnikov, V.A. Moskvina, M.Y. Panchenko, E.G. Astafurova, Mater. Sci. Eng. A 756 (2019) 365-372.
DOI URL |
| [83] |
S.L. Wang, L.E. Murr, Metallography 13 (1980) 203-224.
DOI URL |
| [84] |
C.Y. Cui, Y.F. Gu, D.H. Ping, H. Harada, T. Fukuda, Mater. Sci. Eng. A 485 (2008) 651-656.
DOI URL |
| [85] | S.L. Shang, C.L. Zacherl, H.Z. Fang, Y. Wang, Y. Du, Z.K. Liu, J. Phys. Condens. Matter. 24 (2012) 505403. |
| [1] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
| [2] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
| [3] | Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 159-167. |
| [4] | Yujie Chen, Yan Fang, Xiaoqian Fu, Yiping Lu, Sijing Chen, Hongbin Bei, Qian Yu. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 101-107. |
| [5] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
| [6] | W.-W. Xu, G.H. Yin, Z.Y. Xiong, Q. Yu, T.Q. Gang, L.J. Chen. Plasticity-induced stacking fault behaviors of γ’ precipitates in novel CoNi-based superalloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 20-29. |
| [7] | Zibing An, Shengcheng Mao, Yinong Liu, Li Wang, Hao Zhou, Bin Gan, Ze Zhang, Xiaodong Han. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79(0): 109-117. |
| [8] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
| [9] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
| [10] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
| [11] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
| [12] | Xinglong An, Hao Zhang, Song Ni, Xiaoqin Ou, Xiaozhou Liao, Min Song. Effects of temperature and alloying content on the phase transformation and {10$\bar{1}$1} twinning in Zr during rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 76-80. |
| [13] | Seok Gyu Lee, Bohee Kim, Min Cheol Jo, Kyeong-Min Kim, Junghoon Lee, Jinho Bae, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Effects of Cr addition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels [J]. J. Mater. Sci. Technol., 2020, 50(0): 21-30. |
| [14] | Chong Peng, Hu Tang, Yu He, Xiaoqian Lu, Peng Jia, Guoying Liu, Yucheng Zhao, Mingzhi Wang. A novel non-stoichiometric medium-entropy carbide stabilized by anion vacancies [J]. J. Mater. Sci. Technol., 2020, 51(0): 161-166. |
| [15] | G.W. Hu, L.C. Zeng, H. Du, X.W. Liu, Y. Wu, P. Gong, Z.T. Fan, Q. Hu, E.P. George. Tailoring grain growth and solid solution strengthening of single-phase CrCoNi medium-entropy alloys by solute selection [J]. J. Mater. Sci. Technol., 2020, 54(0): 196-205. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
