J. Mater. Sci. Technol. ›› 2021, Vol. 92: 214-224.DOI: 10.1016/j.jmst.2021.04.005
• Research Article • Previous Articles Next Articles
Yiming Jina,b,*(), Carsten Blawertc, Hong Yangd,e,*(
), Björn Wiesea, Jan Bohlenc, Di Meic, Min Dengc, Frank Feyerabenda, Regine Willumeita,f
Received:
2020-07-24
Revised:
2021-04-11
Accepted:
2021-04-13
Published:
2021-11-30
Online:
2021-05-09
Contact:
Yiming Jin,Hong Yang
About author:
hong.yang@cqu.edu.cn (H. Yang).Yiming Jin, Carsten Blawert, Hong Yang, Björn Wiese, Jan Bohlen, Di Mei, Min Deng, Frank Feyerabend, Regine Willumeit. Deteriorated corrosion performance of micro-alloyed Mg-Zn alloy after heat treatment and mechanical processing[J]. J. Mater. Sci. Technol., 2021, 92: 214-224.
Alloy (wt.%) | T4 heat treatment | Corrosion rate | Ref. |
---|---|---|---|
as-extruded Mg-5Zn | 450 °C / 2 h, quenching | WL (g/m2/h) and icorr (μA/cm2) in 3.5% NaCl solution T4 (2.6; 23) < as-extruded (3.2; 26) | [ |
as-cast Mg-5Zn | 300 °C / 6 h + 500 °C / 42 h, quenching | WL (mm/year), icorr (μA/cm2) and H2 (mm/year) in 3.5% NaCl solution saturated with Mg(OH)2 T4 (6.5; 117; 5.7) < as-cast (15.2; 340; 18.8) | [ |
as-cast Mg-(3, 6)Zn | 340 °C / 6, 12, 18 h, hot water quenching | WL (mm/year) and icorr (μA/cm2) in Kokubo solution As-cast: Mg-3 Zn > Mg-6 Zn Mg-3 Zn T4 (1.9; 210-224) ≈ as-cast (2.0; 228) Mg-6 Zn T4 (1.4; 191-205) < as-cast (3.5; 270) | [ |
as-cast Mg-3Zn | 320 °C / 10 h, hot water quenching | H2 (mL/cm2) and icorr (μA/cm2) in 0.1 mol/L NaCl solution T4 (2.4; 16) < as-cast (3.0; 24) | [ |
Sintered and then extruded Mg-(6, 14.5, 25.3, 40.3)Zn | 450 °C / 12 h, quenching | H2 (mL/cm2) and icorr (μA/cm2) in Ringer's solution as-extruded (8; 15.9) < T4 (34; 19.9) | [ |
as-cast Mg-6Zn | 350 °C / 6, 12, 18, 24, 48 h, quenching | WL (mm/a) and icorr (μA/cm2) in SBF with TRIS 48 h (14.1; 180) < 24 h (14.9; 230) < 18 h (18.3; 360) < 12 h (21.4; 390) < 6 h(23.1; 630) < as-cast (35.9; 810) | [ |
as-extruded Mg-6Zn | 320 °C / 8, 16, 24 h, quenching | H2 (mL/cm2) in 0.9% NaCl solution T4 (6) < as-extruded (17) | [ |
as-extruded Mg-6Zn | 350 °C / 2 h | icorr (μA/cm2) in SBF T4 (3.5) < as-extruded (8.0) | [ |
Table 1 Literature review on the effect of heat treatment on the corrosion performance of binary Mg-Zn systems. WL: weight loss, H2: hydrogen evolution, icorr: corrosion current density from potentiodynamic polarisation test.
Alloy (wt.%) | T4 heat treatment | Corrosion rate | Ref. |
---|---|---|---|
as-extruded Mg-5Zn | 450 °C / 2 h, quenching | WL (g/m2/h) and icorr (μA/cm2) in 3.5% NaCl solution T4 (2.6; 23) < as-extruded (3.2; 26) | [ |
as-cast Mg-5Zn | 300 °C / 6 h + 500 °C / 42 h, quenching | WL (mm/year), icorr (μA/cm2) and H2 (mm/year) in 3.5% NaCl solution saturated with Mg(OH)2 T4 (6.5; 117; 5.7) < as-cast (15.2; 340; 18.8) | [ |
as-cast Mg-(3, 6)Zn | 340 °C / 6, 12, 18 h, hot water quenching | WL (mm/year) and icorr (μA/cm2) in Kokubo solution As-cast: Mg-3 Zn > Mg-6 Zn Mg-3 Zn T4 (1.9; 210-224) ≈ as-cast (2.0; 228) Mg-6 Zn T4 (1.4; 191-205) < as-cast (3.5; 270) | [ |
as-cast Mg-3Zn | 320 °C / 10 h, hot water quenching | H2 (mL/cm2) and icorr (μA/cm2) in 0.1 mol/L NaCl solution T4 (2.4; 16) < as-cast (3.0; 24) | [ |
Sintered and then extruded Mg-(6, 14.5, 25.3, 40.3)Zn | 450 °C / 12 h, quenching | H2 (mL/cm2) and icorr (μA/cm2) in Ringer's solution as-extruded (8; 15.9) < T4 (34; 19.9) | [ |
as-cast Mg-6Zn | 350 °C / 6, 12, 18, 24, 48 h, quenching | WL (mm/a) and icorr (μA/cm2) in SBF with TRIS 48 h (14.1; 180) < 24 h (14.9; 230) < 18 h (18.3; 360) < 12 h (21.4; 390) < 6 h(23.1; 630) < as-cast (35.9; 810) | [ |
as-extruded Mg-6Zn | 320 °C / 8, 16, 24 h, quenching | H2 (mL/cm2) in 0.9% NaCl solution T4 (6) < as-extruded (17) | [ |
as-extruded Mg-6Zn | 350 °C / 2 h | icorr (μA/cm2) in SBF T4 (3.5) < as-extruded (8.0) | [ |
Mg-0.5Zn | Term |
as-cast | as-cast |
solution-treated 2 h | HT-2 h |
solution-treated 16 h | HT-16 h |
as-cast and then extruded | as cast-extruded |
solution-treated 16 h and then extruded | HT16 h-extruded |
Table 2 Terminology used to describe the different treated Mg-0.5 Zn alloy in this work.
Mg-0.5Zn | Term |
as-cast | as-cast |
solution-treated 2 h | HT-2 h |
solution-treated 16 h | HT-16 h |
as-cast and then extruded | as cast-extruded |
solution-treated 16 h and then extruded | HT16 h-extruded |
Composition (wt.%) | ||||
---|---|---|---|---|
Zn | Mn | Si | Al | Ca |
0.49 ± 0.02 0.49 ± 0.02 | 0.0177 ± 0.0005 0.0169 ± 0.0005 | 0.0076 ± 0.0004 0.0067 ± 0.0004 | 0.0047 ± 0.0005 0.0032 ± 0.0005 | 0.0019 ± 0.0005 0.0019 ± 0.0005 |
Fe | Cu | Ni | Be | Mg |
0.0014 ± 0.0006 0.0013 ± 0.0006 | < 0.0003 < 0.0003 | < 0.0003 < 0.0003 | < 0.0003 < 0.0003 | Bal. Bal. |
Table 3 Chemical compositions of the as-cast and as-extruded Mg-0.5 Zn alloy determined by ICP-OES.
Composition (wt.%) | ||||
---|---|---|---|---|
Zn | Mn | Si | Al | Ca |
0.49 ± 0.02 0.49 ± 0.02 | 0.0177 ± 0.0005 0.0169 ± 0.0005 | 0.0076 ± 0.0004 0.0067 ± 0.0004 | 0.0047 ± 0.0005 0.0032 ± 0.0005 | 0.0019 ± 0.0005 0.0019 ± 0.0005 |
Fe | Cu | Ni | Be | Mg |
0.0014 ± 0.0006 0.0013 ± 0.0006 | < 0.0003 < 0.0003 | < 0.0003 < 0.0003 | < 0.0003 < 0.0003 | Bal. Bal. |
Fig. 2. BSE SEM images of the precipitates in (a) as-cast, (b) HT-2 h and (c) HT-16 h Mg-0.5 Zn samples; (a1-c1) (a2-c2) corresponding compositions of the precipitates and the matrix indicated by EDS.
Fig. 4. Corrosion morphologies of (a-f) as-cast, (e-h) HT-2 h and (i-l) HT-16 h Mg-0.5 Zn samples after immersion for 5 min, 0.5 h, 2 h and 6 h, respectively.
Fig. 5. Corrosion morphologies of the (a) as-cast and (b-c) HT-16 h Mg-0.5 Zn samples after immersion for 2 min; (a1-c1) the corresponding particle compositions indicated by EDS.
Fig. 9. BSE-SEM images of the characteristic corrosion morphologies of (a) as-cast, (b) HT-2 h and (c) HT-16 h samples after 3 days immersion. Images a1 and a2 are the zoomed-in areas of image a.
Fig. 11. EIS Nyquist plots of (a) as cast-extruded and (b) HT16 h-extruded Mg-0.5 Zn samples; (a1-b1) corresponding corrosion morphologies after 72 h immersion.
Fig. 13. (a) Calculated phase diagrams of Mg0.5Zn-Fe system via Pandat; (b1-b5) schematics of the microstructure and Fe particles change during solidification and solution treatment. The red line in (a) represents the exact Fe content in the system (14 ppm). The red dots in (b) stand for the Fe particles and the bigger and darker dots depict the Fe particles are getting bigger and more concentrated during heat treatment.
[1] |
M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Prog. Mater. Sci. 89 (2017) 92-193.
DOI URL |
[2] | X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer, M.L. Zhe-ludkevich, Surf.Coat. Technol. 307 (2016) 1165-1182. |
[3] |
Y. Chen, X. Lu, S.V. Lamaka, P. Ju, C. Blawert, T. Zhang, F. Wang, M.L. Zheludke-vich, Appl. Surf. Sci. 504 (2020) 144462.
DOI URL |
[4] |
C. Zhang, B. Liu, B. Yu, X. Lu, Y. Wei, T. Zhang, J.M.C. Mol, F. Wang, Surf. Coat. Technol. 359 (2019) 414-425.
DOI URL |
[5] |
S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Mater. Sci. Eng. C 68 (2016) 948-963.
DOI URL |
[6] |
M.M. Gawlik, B. Wiese, V. Desharnais, T. Ebel, R. Willumeit-Römer, Materials (Basel) 11 (2018) 2561.
DOI URL |
[7] |
Y. Jin, C. Blawert, H. Yang, B. Wiese, F. Feyerabend, J. Bohlen, D. Mei, M. Deng, M. Silva Campos, N. Scharnagl, K. Strecker, J. Bode, C. Vogt, R. Willumeit-Römer, Mater. Des. 195 (2020) 108980.
DOI URL |
[8] | M. Deng, L. Wang, D. Höche, S.V. Lamaka, D. Snihirova, P. Jiang, M.L. Zhelud-kevich, Corros.Sci. 177 (2020) 108958. |
[9] |
N. Li, Y. Zheng, J. Mater. Sci. Technol. 29 (2013) 489-502.
DOI URL |
[10] |
M.-.S. Song, R.-.C. Zeng, Y.-.F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X.-.B. Chen, J. Mater. Sci. Technol. 35 (2019) 535-544.
DOI URL |
[11] |
J. Wang, H. Zhou, L. Wang, S. Zhu, S. Guan, J. Mater. Sci. Technol. 35 (2019) 1211-1217.
DOI URL |
[12] |
S. Zhang, Y. Zheng, L. Zhang, Y. Bi, J. Li, J. Liu, Y. Yu, H. Guo, Y. Li, Mater. Sci. Eng. C 68 (2016) 414-422.
DOI URL |
[13] |
S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, Acta Biomater 6 (2010) 626-640.
DOI URL |
[14] |
S. Zhang, J. Li, Y. Song, C. Zhao, X. Zhang, C. Xie, Y. Zhang, H. Tao, Y. He, Y. Jiang, Y. Bian, Mater. Sci. Eng. C 29 (2009) 1907-1912.
DOI URL |
[15] |
X.-b. Liu, D.-y. Shan, Y.-w. Song, E.-h. Han, Trans. Nonferrous Met. Soc. China 20 (2010) 1345-1350.
DOI URL |
[16] |
S.-.M. Baek, B. Kim, S.S. Park, Metals (Basel) 8 (2018) 323.
DOI URL |
[17] |
G. Ben-Hamu, D. Eliezer, K.S. Shin, Mater. Sci. Eng. A 447 (2007) 35-43.
DOI URL |
[18] |
S. Zhang, J. Li, Y. Song, C. Zhao, C. Xie, X. Zhang, Adv. Eng. Mater. 12 (2010) B170-B174.
DOI URL |
[19] |
Y. Yan, H. Cao, Y. Kang, K. Yu, T. Xiao, J. Luo, Y. Deng, H. Fang, H. Xiong, Y. Dai, J. Alloy. Compd. 693 (2017) 1277-1289.
DOI URL |
[20] | J.D. Hanawalt, C.E. Nelson, J.A. Peloubet, Trans. AIME 147 (1942) 273-299. |
[21] |
A. Prasad, P.J. Uggowitzer, Z. Shi, A. Atrens, Adv. Eng. Mater. 14 (2012) 477-490.
DOI URL |
[22] | F. Pan, X. Chen, T. Yan, T. Liu, J. Mao, W. Luo, Q. Wang, J. Peng, A. Tang, B. Jiang, J. Magnes. Alloy. 4 (2016) 8-14. |
[23] | S.V. Lamaka, B. Vaghefinazari, D. Mei, R.P. Petrauskas, D. Höche, M.L. Zhelud-kevich, Corros.Sci. 128 (2017) 224-240. |
[24] |
M. Liu, P.J. Uggowitzer, A.V. Nagasekhar, P. Schmutz, M. Easton, G.-.L. Song, A. Atrens, Corros. Sci. 51 (2009) 602-619.
DOI URL |
[25] |
Z. Qiao, Z. Shi, N. Hort, N.I. Zainal Abidin, A. Atrens, Corros. Sci. 61 (2012) 185-207.
DOI URL |
[26] |
F. Cao, G.-.L. Song, A. Atrens, Corros. Sci. 111 (2016) 835-845.
DOI URL |
[27] |
L. Yang, X. Zhou, S.-.M. Liang, R. Schmid-Fetzer, Z. Fan, G. Scamans, J. Robson, G. Thompson, J. Alloy. Compd. 619 (2015) 396-400.
DOI URL |
[28] |
G. Han, J.-.Y. Lee, Y.-.C. Kim, J.H. Park, D.-.I. Kim, H.-.S. Han, S.-.J. Yang, H.-.K. Seok, Corros. Sci. 63 (2012) 316-322.
DOI URL |
[29] | J. Hofstetter, E. Martinelli, A.M. Weinberg, M. Becker, B. Mingler, P.J. Uggow-itzer, J.F. Löffler, Corros.Sci. 91 (2015)29-36. |
[30] |
H. Matsubara, Y. Ichige, K. Fujita, H. Nishiyama, K. Hodouchi, Corros. Sci. 66 (2013) 203-210.
DOI URL |
[31] | M. Liu, G.-.L. Song, Corros.Sci. 77 (2013) 143-150. |
[32] |
Y. Song, E.-.H. Han, D. Shan, C.D. Yim, B.S. You, Corros. Sci. 60 (2012) 238-245.
DOI URL |
[33] |
F. Cao, Z. Shi, G.-.L. Song, M. Liu, A. Atrens, Corros. Sci. 76 (2013) 60-97.
DOI URL |
[34] | H.R. Bakhsheshi-Rad, E. Hamzah, M. Medraj, M.H. Idris, A.F. Lotfabadi, M. Da-roonparvar, M.A.M. Yajid, Mater. Corros. 65 (2014) 999-1006. |
[35] | S.M.G. Shahri, M.H. Idris, H. Jafari, B. Gholampour, M. Assadian, Trans. Nonfer-rous Met. Soc. China 25 (2015) 1490-1499. |
[36] | K. Yan, H. Liu, N. Feng, J. Bai, H. Cheng, J. Liu, F. Huang, J. Magnes. Alloy. 7 (2019) 305-314. |
[37] | V. Kree, J. Bohlen, D. Letzig, K.U. Kainer, Praktische Metallographie 41 (2004) 233-246. |
[38] | Pandat software package for calculating phase diagrams and thermodynamic properties of multi-component alloys, CompuTherm LLC, 2017. |
[39] |
Y. Zhang, P. Gore, W. Rong, Y. Wu, Y. Yan, R. Zhang, L. Peng, J.-.F. Nie, N. Birbilis, Corros. Sci. 136 (2018) 106-118.
DOI URL |
[40] |
M. Jönsson, D. Persson, D. Thierry, Corros. Sci. 49 (2007) 1540-1558.
DOI URL |
[41] |
C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song, A. Tang, Mater. Des. 70 (2015) 60-67.
DOI URL |
[42] |
Z. Li, X. Gu, S. Lou, Y. Zheng, Biomaterials 29 (2008) 1329-1344.
DOI URL |
[43] | X. Ding, P. Fan, Q. Han, Acta Metall. Sin. 30 (1994) 49-60. |
[44] |
A.R. Miedema, P.F. de Châtel, F.R. de Boer, Physica B + C 100 (1980) 1-28.
DOI URL |
[45] |
H. Yang, Y. Huang, D. Tolnai, K.U. Kainer, H. Dieringa, Mater. Sci. Eng. A 764 (2019) 138215.
DOI URL |
[46] |
Y. Yuan, Y. Huang, Q. Wei, Metals (Basel) 9 (2019) 607.
DOI URL |
[47] |
K. Gusieva, C.H.J. Davies, J.R. Scully, N. Birbilis, Int. Mater. Rev. 60 (2015) 169-194.
DOI URL |
[48] |
B.-.C. Zhou, S.-.L. Shang, Y. Wang, Z.-.K. Liu, Acta Mater 103 (2016) 573-586.
DOI URL |
[49] |
A. Atrens, G.-.L. Song, M. Liu, Z. Shi, F. Cao, M.S. Dargusch, Adv. Eng. Mater. 17 (2015) 400-453.
DOI URL |
[50] |
S. Pawar, X. Zhou, G.E. Thompson, G. Scamans, Z. Fan, J. Electrochem. Soc. 162 (2015) C442-C448.
DOI URL |
[51] | S.K. Woo, B.-.C. Suh, N.R. Kim, H.S. Kim, C.D. Yim, in: The Corrosion Behavior of High Purity Mg according to Process History, Springer International Publishing, Cham, 2020, pp. 225-230. |
[52] | F. Andreatta, I. Apachitei, A.A. Kodentsov, J. Dzwonczyk, J. Duszczyk, Elec-trochim. Acta 51 (2006) 3551-3557. |
[53] |
H. Jia, X. Feng, Y. Yang, Corros. Sci. 120 (2017) 75-81.
DOI URL |
[54] | R. Zeng, Z. Yin, X. Chen, D. Xu, Corrosion types of magnesium alloys, in: tomasz Tański, W. Borek, M. Król (Eds.), Magnesium alloys -selected issue, IntechOpen2018. |
[55] |
H. Wang, Y. Song, J. Yu, D. Shan, H. Han, J. Electrochem. Soc. 164 (2017) C574-C580.
DOI URL |
[56] | Y. Song, D. Shan, R. Chen, E.-.H. Han, Corros.Sci. 52 (2010) 1830-1837. |
[57] |
J.-.Y. Lee, G. Han, Y.-.C. Kim, J.-.Y. Byun, J.-i. Jang, H.-.K. Seok, S.-.J. Yang, Met. Mater.-Int. 15 (2009) 955-961.
DOI URL |
[58] |
L. Yang, G. Liu, L. Ma, E. Zhang, X. Zhou, G. Thompson, Corros. Sci. 139 (2018) 421-429.
DOI URL |
[59] |
R.S. Lillard, Electrochem. Solid-State Lett 6 (2003) B29-B31.
DOI URL |
[60] |
Y. Song, E.-.H. Han, D. Shan, C.D. Yim, B.S. You, Corros. Sci. 65 (2012) 322-330.
DOI URL |
[61] |
Y. Jin, C. Blawert, F. Feyerabend, J. Bohlen, M. Silva Campos, S. Gavras, B. Wiese, D. Mei, M. Deng, H. Yang, R. Willumeit-Römer, Corros. Sci. 158 (2019) 108096.
DOI URL |
[62] |
E. Koç, M.B. Kannan, M. Ünal, E. Candan, J. Alloy. Compd. 648 (2015) 291-296.
DOI URL |
[63] |
Z. Shi, G. Song, A. Atrens, Surf. Coat. Technol. 201 (2006) 492-503.
DOI URL |
[64] |
D. Orlov, K.D. Ralston, N. Birbilis, Y. Estrin, Acta Mater 59 (2011) 6176-6186.
DOI URL |
[65] |
J. Hofstetter, E. Martinelli, S. Pogatscher, P. Schmutz, E. Povoden-Karadeniz, A.M. Weinberg, P.J. Uggowitzer, J.F. Löffler, Acta Biomater 23 (2015) 347-353.
DOI PMID |
[66] |
F. Cao, Z. Shi, J. Hofstetter, P.J. Uggowitzer, G. Song, M. Liu, A. Atrens, Corros. Sci. 75 (2013) 78-99.
DOI URL |
[67] |
G. Katarivas Levy, E. Aghion, Adv. Eng. Mater. 18 (2016) 269-276.
DOI URL |
[68] |
L. Zhang, X. Dong, J. Li, W. Wang, A. Wang, Z. Fan, J. Rare Earths 29 (2011) 77-82.
DOI URL |
[1] | Qiang Ren, Yuexin Zhang, Ying Ren, Lifeng Zhang, Jujin Wang, Yadong Wang. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab [J]. J. Mater. Sci. Technol., 2021, 61(0): 147-158. |
[2] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[3] | Gui-Jia Gao, Mei-Qi Zeng, En-Liang Zhang, Rong-Chang Zeng, Lan-Yue Cui, Dao-kui Xu, Feng-Qin Wang, M. Bobby Kannan. Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3Nd-1Li-0.2Zn alloy [J]. J. Mater. Sci. Technol., 2021, 83(0): 161-178. |
[4] | Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 83(0): 18-33. |
[5] | Milad Ghayoor, Saereh Mirzababaei, Anumat Sittiho, Indrajit Charit, Brian K. Paul, Somayeh Pasebani. Thermal stability of additively manufactured austenitic 304L ODS alloy [J]. J. Mater. Sci. Technol., 2021, 83(0): 208-218. |
[6] | Ying Lin, Jin Chen, Shian Dong, Guangning Wu, Pingkai Jiang, Xingyi Huang. Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites [J]. J. Mater. Sci. Technol., 2021, 83(0): 219-227. |
[7] | Jingfeng Zou, Lifeng Ma, Weitao Jia, Qichi Le, Gaowu Qin, Yuan Yuan. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 228-238. |
[8] | Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 256-263. |
[9] | Sajian Wu, Jing Li, Changji Li, Yiyi Li, Liangyin Xiong, Shi Liu. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 49-57. |
[10] | Nan Wang, Yidi Shen, Qi An, Kolan Madhav Reddy, Mingjiang Jin, Rajamallu Karre, Xiaodong Wang. Microstructure evolution and mechanical property of Cu-15Ni-8Sn-0.2Nb alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 86(0): 227-236. |
[11] | Y.L. Qi, L. Zhao, X. Sun, H.X. Zong, X.D. Ding, F. Jiang, H.L. Zhang, Y.K. Wu, L. He, F. Liu, S.B. Jin, G. Sha, J. Sun. Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries [J]. J. Mater. Sci. Technol., 2021, 86(0): 271-284. |
[12] | Xuanwei Zhao, Xianming Zheng, Xiaohua Luo, Fei Gao, Hai Zeng, Guang Yu, Sajjad Ur Rehman, Changcai Chen, Shengcan Ma, Weijun Ren, Zhenchen Zhong. Large magnetocaloric effect and magnetoresistance in ErNi single crystal [J]. J. Mater. Sci. Technol., 2021, 86(0): 56-63. |
[13] | Gang Chen, Klaus-Dieter Liss, Chao Chen, Yuehui He, Xuanhui Qu, Peng Cao. Porous FeAl alloys via powder sintering: Phase transformation, microstructure and aqueous corrosion behavior [J]. J. Mater. Sci. Technol., 2021, 86(0): 64-69. |
[14] | Zijian Yu, Xi Xu, Adil Mansoor, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Precipitate characteristics and their effects on the mechanical properties of as-extruded Mg-Gd-Li-Y-Zn alloy [J]. J. Mater. Sci. Technol., 2021, 88(0): 21-35. |
[15] | Qinqin Wei, Guoqiang Luo, Rong Tu, Jian Zhang, Qiang Shen, Yujie Cui, Yunwei Gui, Akihiko Chiba. High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite [J]. J. Mater. Sci. Technol., 2021, 84(0): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||