J. Mater. Sci. Technol. ›› 2021, Vol. 92: 208-213.DOI: 10.1016/j.jmst.2021.03.027
• Research Article • Previous Articles Next Articles
Benqi Jiaoa, Qinyang Zhaob,*(), Yongqing Zhaoa,c,*(
), Laiping Lic, Zhongwu Huc, Xuanqiao Gaoc, Wen Zhangc, Jianfeng Lic
Received:
2020-12-14
Revised:
2021-03-08
Accepted:
2021-03-11
Published:
2021-11-30
Online:
2021-05-08
Contact:
Qinyang Zhao,Yongqing Zhao
About author:
trc@c-nin.com (Y. Zhao).Benqi Jiao, Qinyang Zhao, Yongqing Zhao, Laiping Li, Zhongwu Hu, Xuanqiao Gao, Wen Zhang, Jianfeng Li. The relationship between slip behavior and dislocation arrangement for large-size Mo-3Nb single crystal at room temperature[J]. J. Mater. Sci. Technol., 2021, 92: 208-213.
Fig. 1. The received Mo-3Nb single crystal bar (a); the region and direction of sampling (b); the crystallographic orientations for single crystal specimens before compression(c) and corresponding inverse pole figure map (d).
Fig. 3. Slip traces of Mo-3Nb single crystal compressed at ε=4% (a-c), 7% (d-f), 15% (g-i), 30% (j-l) and 50% (m-o). Face A (a, d, g, j, m) represents the front surface (green) and Face B (b, e, h, k, n) represents the side surface (orange); (c, f, i, l, o) are AFM morphologies for Face B.
Fig. 5. Dislocation arrangements of Mo-3Nb single crystal compressed at various strain hardening stages: stage I (a-c); stage II (d-f); softening stage (g-l). The thin foils were sectioned parallel to (101) plane.
Fig. 6. Schematic diagram showing the different slip traces induced by double cross-slip multiplication mechanism: screw dislocation glides on primary (101) plane (a); small segments of a gliding screw dislocation cross slip onto secondary slip plane (b); the dislocation in secondary slip plane cross slip again onto a parallel (101) plane and the formation of dislocation jog (c); the loop generated by dislocation multiplication (d) and slip traces formed by repeating the process of double cross-slip multiplication (e).
[1] |
G. Yang, S.J. Park, Materials (Basel) 12 (2019) 1-18, doi: 10.3390/ma12122003.
DOI URL |
[2] |
F. Guiu, Scr. Metall. 3 (1969) 449-454, doi: 10.1016/0036-9748(69)90129-x.
DOI URL |
[3] |
W. Wasserbäch, Phys. Status Solidi 147 (1995) 417-446, doi: 10.1002/pssa.2211470213.
DOI |
[4] |
L.L. Hsiung, Mater. Sci. Eng. A 528 (2010) 329-337, doi: 10.1016/j.msea.2010.09.017.
DOI URL |
[5] |
K. Kitajima, Y. Aono, E. Kuramoto, Scr. Metall. 15 (1981) 919-924, doi: 10.1016/0036-9748(81)90278-7.
DOI URL |
[6] | Y. Aono, E. Kuramoto, D. Brunner, J. Diehl, Strength Met. Alloy. (ICSMA 8) 1 (1989) 271-276. |
[7] |
F. Guiu, Phys. Status Solidi 19 (1967) 339-351, doi: 10.1002/pssb.19670190135.
DOI URL |
[8] |
R. Gröger, Z. Chlup, I. Kuběna, T. Kruml, Philos. Mag. 98 (2018) 2749-2768, doi: 10.1080/14786435.2018.1505056.
DOI URL |
[9] |
F. Ackermann, H. Mughrabi, A. Seeger, Acta Metall. 31 (1983) 1353-1366, doi: 10.1016/0001-6160(83)90006-8.
DOI URL |
[10] |
C.J. Bolton, G. Taylor, Philos. Mag. A 26 (1972) 1359-1376, doi: 10.1080/14786437208220348.
DOI |
[11] |
R. Groger, Z. Chlup, T. Kuběnová, I. Kuběna, J. Mater. Res. 34 (2019) 261-270, doi: 10.1557/jmr.2018.398.
DOI |
[12] |
W.A. Spitzig, T.E. Mitchell, Acta Metall 14 (1966) 1311-1323, doi: 10.1016/0001-6160(66)90248-3.
DOI URL |
[13] |
M. Werner, Phys. Status Solidi 104 (1987) 63-78, doi: 10.1002/pssa.2211040105.
DOI URL |
[14] |
W. Wasserbäch, Philos. Mag. A 51 (1985) 619-628, doi: 10.1080/01418618508237582.
DOI URL |
[15] |
B. Dieter, Int. J. Mater. Res. 101 (2010) 1003-1013, doi: 10.3139/146.110362.
DOI URL |
[16] |
A.S. Argon, S.R. Maloof, Acta Metall 14 (1966) 1449-1462, doi: 10.1016/0001-6160(66)90165-9.
DOI URL |
[17] |
T.E. Mitchell, R.A. Foxall, P.B. Hirsch, Philos. Mag. 8 (1963) 1895-1920, doi: 10.1080/14786436308209081.
DOI URL |
[18] |
M.S. Duesbery, R.A. Foxall, P.B. Hirsch, Le J. Phys. Colloq. 27 (1966) C3-193-C3-194 C3-193-C3-204, doi: 10.1051/jphyscol:1966325.
DOI |
[19] |
J. Richter, Phys. Status Solidi 46 (1971) 203-215, doi: 10.1002/pssb.2220460118.
DOI URL |
[20] | Z.W. Hu, Z.K. Li, Q. Zhang, Nonferrous Met 60 (2008) 1-4. |
[21] |
U.F. Kocks, J. Eng. Mater. Technol. 98 (1976) 76-85, doi: 10.1115/1.3443340.
DOI URL |
[22] |
V. Vítek, R.C. Perrin, D.K. Bowen, Philos. Mag. 21 (1970) 1049-1073, doi: 10.1080/14786437008238490.
DOI URL |
[23] |
R. Maddin, N.K. Chen, Prog. Met. Phys. 5 (1954) 53-95, doi: 10.1016/0502-8205(54)90004-0.
DOI URL |
[24] |
H. Matsui, H. Kimura, Trans. Jpn. Inst. Met. 22 (1981) 481-492, doi: 10.2320/matertrans1960.22.481.
DOI URL |
[25] |
C.V. Kopetskii, A.I. Pashkovskii, Phys. Status Solidi 21 (1974) 741-751, doi: 10.1002/pssa.2210210241.
DOI |
[26] |
A. Luft, L. Kaun, Phys. Status Solidi 37 (1970) 781-793, doi: 10.1002/pssb.19700370229.
DOI URL |
[27] |
F.C. Frank, W.T. Read, Phys. Rev. 79 (1950) 722-723, doi: 10.1103/PhysRev.79.722.
DOI URL |
[28] | D. Hull, D.J. Bacon, in: Introduction to Dislocations, Elsevier, Amsterdam, 2011, pp. 500-502. |
[29] |
A. Lawley, H.L. Gaigher, Philos. Mag. 10 (1964) 15-33, doi: 10.1080/14786436408224204.
DOI URL |
[30] |
R.J. Arsenault, Acta Metall 14 (1966) 831-838, doi: 10.1016/0001-6160(66)90003-4.
DOI URL |
[1] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[2] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
[3] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[4] | Q. Cheng, X.D. Xu, P. Xie, L.L. Han, J.Y. He, X.Q. Li, J. Zhang, Z.T. Li, Y.P. Li, B. Liu, T.G. Nieh, M.W. Chen, J.H. Chen. Unveiling anneal hardening in dilute Al-doped AlxCoCrFeMnNi (x = 0, 0.1) high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 91(0): 270-277. |
[5] | Abbas Mohammadi, Nariman A. Enikeev, Maxim Yu. Murashkin, Makoto Arita, Kaveh Edalati. Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation [J]. J. Mater. Sci. Technol., 2021, 91(0): 78-89. |
[6] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[7] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
[8] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[9] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
[10] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
[11] | Weichao Bao, Stuart Robertson, Jia-Wei Zhao, Ji-Xuan Liu, Houzheng Wu, Guo-Jun Zhang, Fangfang Xu. Structural integrity and damage of ZrB2 ceramics after 4 MeV Au ions irradiation [J]. J. Mater. Sci. Technol., 2021, 72(0): 223-230. |
[12] | Huan Zhang, Yangxin Li, Yuxuan Liu, Qingchun Zhu, Xixi Qi, Gaoming Zhu, Jinhui Wang, Peipeng Jin, Xiaoqin Zeng. The effect of basal <a> dislocation on $\left\{ 11\bar{2}1 \right\}$ twin boundary evolution in a Mg-Gd-Y-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 81(0): 212-218. |
[13] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
[14] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Microstructure evaluation of shear bands of microcutting chips in AA6061 alloy under the mechanochemical effect [J]. J. Mater. Sci. Technol., 2021, 91(0): 178-186. |
[15] | Zhonghuai Wu, Liangchi Zhang. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide [J]. J. Mater. Sci. Technol., 2021, 90(0): 58-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||