J. Mater. Sci. Technol. ›› 2021, Vol. 92: 195-207.DOI: 10.1016/j.jmst.2021.02.059
• Research Article • Previous Articles Next Articles
Zibing Ana, Shengcheng Maoa,*(), Yinong Liub,*(
), Hao Zhouc, Yadi Zhaia, Zhiyong Tiana, Cuixiu Liua, Ze Zhanga,d, Xiaodong Hana,*(
)
Received:
2021-01-31
Revised:
2021-02-27
Accepted:
2021-02-28
Published:
2021-11-30
Online:
2021-05-09
Contact:
Shengcheng Mao,Yinong Liu,Xiaodong Han
About author:
xdhan@bjut.edu.cn (X. Han).Zibing An, Shengcheng Mao, Yinong Liu, Hao Zhou, Yadi Zhai, Zhiyong Tian, Cuixiu Liu, Ze Zhang, Xiaodong Han. Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy[J]. J. Mater. Sci. Technol., 2021, 92: 195-207.
Element | Co | Cr | Fe | Mn | Ni |
---|---|---|---|---|---|
R (pm) | 125 | 125 | 125 | 124 | 125 |
VEC | 9 | 6 | 8 | 7 | 10 |
Table 1 Atomic radius (R) and valence electron concentration (VEC) of the constituent elements of CoCrFeMnNi alloys.
Element | Co | Cr | Fe | Mn | Ni |
---|---|---|---|---|---|
R (pm) | 125 | 125 | 125 | 124 | 125 |
VEC | 9 | 6 | 8 | 7 | 10 |
Sample | Co (at.%) | Cr (at.%) | Fe (at.%) | Mn (at.%) | Ni (at.%) |
---|---|---|---|---|---|
A-HEA | 22.9 | 21.9 | 22.1 | 19.3 | 13.8 |
Table 2 Compositions (at.%) of the CoCrFeMnNi alloy.
Sample | Co (at.%) | Cr (at.%) | Fe (at.%) | Mn (at.%) | Ni (at.%) |
---|---|---|---|---|---|
A-HEA | 22.9 | 21.9 | 22.1 | 19.3 | 13.8 |
Fig. 1. Microstructures of the Co21.5Cr21.5Fe21.5Mn21.5Ni14 alloy under three different conditions. (a) XRD patterns of the —C-HEA, A-HEA and R-HEA samples. (b) Enlarged views of the (111) diffraction peaks of the three samples. (c) Tri-color EBSD grain orientation map of the —C-HEA. (d) Tri-color EBSD grain orientation map of the A-HEA. (e) The distribution of grain misorientation angles corresponding to the area of (d). The inset shows a magnified view of some twin boundaries (indicated by the arrows). (f) Grain size distributions of —C-HEA and A-HEA.
Fig. 2. Microstructural analysis of the —C-HEA and A-HEA samples. (a) A bright-field TEM image of the —C-HEA sample. The inset is a selected area diffraction pattern, indexed to an FCC single crystal in the [110] zone axis. (b) A bright-field TEM image of the A-HEA sample. The inset is a selected area diffraction pattern showing the twinned structure. (c) A HAADF-STEM image and the elemental distribution maps of the A-HEA sample.
Fig. 3. Mechanical properties of the Co21.5Cr21.5Fe21.5Mn21.5Ni14 HEA after different thermomechanical treatments. (a) Schematic of the RASP treatment. (b) Nano-hardness distribution profiles though the thickness for the as-cast sample, the cold worked and annealed sample, and the RASP treated sample. (c) True tensile stress-strain curves of the three samples. (d) Comparison of the relative changes of strength and ductility for “Cantor” HEAs strengthened by different mechanisms.
Sample | σy (MPa) | σUTS (MPa) | δE (%) | K (J/m3) |
---|---|---|---|---|
C-HEA | 200 | 560 | 34.0 | 1.28×1010 |
—A-HEA | 300 | 765 | 33.2 | 1.91×1010 |
R-HEA | 750 | 1050 | 27.5 | 2.53×1010 |
Table 3 Mechanical properties of the three HEAs.
Sample | σy (MPa) | σUTS (MPa) | δE (%) | K (J/m3) |
---|---|---|---|---|
C-HEA | 200 | 560 | 34.0 | 1.28×1010 |
—A-HEA | 300 | 765 | 33.2 | 1.91×1010 |
R-HEA | 750 | 1050 | 27.5 | 2.53×1010 |
Fig. 4. Gradient microstructure of the RASP treated Co21.5Cr21.5Fe21.5Mn21.5Ni14 plate. (a) A schematic of the grain size gradient through the plate thickness. (b)-(d) EBSD micrographs of the alloy at different depths from the surface. (e)-(g) TEM micrographs of twin structures in regions (I), (II) and (III). The insets in (e)-(g) are selected area electron diffraction patterns from each region. (h) A high-resolution HAADF-STEM image of the deformation twins in region (I). (i) Variation of the average grain size through the plate thickness. (j) Variation of the average thickness of deformation twins through the plate thickness.
Fig. 5. TEM analysis of the micro-mechanisms of deformation of R-HEA. The sample was pre-deformed in tension to 7.5% of strain. (a) and (b) TEM bright-field images of region (I). The region contained annealing twins and deformation twins. (c) A HRTEM image showing details of twin boundaries and stacking faults. (d) A HRTEM image revealing several dislocations, twin boundaries and stacking faults. (e) A HAADF-STEM image identifying the Burgers vector of a $\frac{1}{2}\left[ 0\bar{1}1 \right]$ full dislocation.
Fig. 6. TEM analysis of the micro-mechanisms of deformation of R-HEA in region (III) after 7.5% tensile deformation. (a) Bright field image showing annealing twins and massive networks of dislocations. (b) A SAED pattern in [011] zone axis showing the twin structure.
Fig. 7. TEM analysis of micro-mechanisms of plastic deformation the R-HEA at the tensile strain of 20%. (a) Dark field image revealing deformation twins in region (I). (b) A [011] SAED pattern of the twin structure in (a). (c) Dark field image showing microbands in region (I). (d) Dark field image showing deformation twins in region (III). (e) A [011] SAED pattern of the twin structure in (d). (f) Bright field image revealing massive dislocations in cell structure in region (III).
Fig. 8. TEM micrographs of the —C-HEA at different tensile strains. (a) TEM image of the alloy after 7.5% tensile deformation. (b) TEM image of the alloy after 25% tensile deformation. (c) TEM image of the alloy after 30% deformation, revealing a high density and networked stacking faults. (d) HRTEM image of stacking faults and partial dislocations.
Fig. 9. Schematic illustrations of the deformation mechanisms in —C-HEA and R-HEA. (a) Microstructure of the —C-HEA. (b)-(d) Microstructures of the —C-HEA at different deformation levels, expressing the interactions among grain boundaries, deformation twins, stacking fault networks and dislocations. The long and parallel lines represent deformation twins. The grids in (d) represent a stacking fault network. “T” represents dislocations. (e) Microstructure of the A-HEA with annealing twins (yellow regions). (f)-(h) Microstructure of the R-HEA in region (Ⅰ) at different levels of deformation, including annealing twins (yellow regions), deformation twins (pink lines), stacking faults (red lines) and geometrically necessary dislocations. (i)-(k) Microstructure of the R-HEA in region (Ⅲ) at different deformation levels, including annealing twins, dislocations and deformation twins.
Fig. 10. Schematic illustrations of the strengthening mechanisms in R-HEA. (a) Lattice friction strength. (b) Solid solution strengthening. (c) The grain size strengthening. (d) The twin strengthening. (e) Dislocation strengthening. (f) The hetero-deformation induced strengthening.
Fig. 11. Effect of grain size on tensile strength of Co21.5Cr21.5Fe21.5Mn21.5Ni14 alloy. (a)-(c) EBSD IPF maps of the alloy annealed at three different temperatures, as indicated in the figures. (d)-(f) Grain size distributions in the three samples corresponding to (a)-(c). (g) Engineering stress-strain curves of the three samples with different average grain sizes. (c) Dependence of the yield strength on the average grain size.
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.t. Shun, Nanostructured High-Entropy Alloys with Multiple Principal Elements: novel Alloy Design Concepts and Outcomes, Adv.Eng. Mater. 6 (2004) 299-303. |
[2] | M.H. Tsai, J.W. Yeh, High-Entropy Alloys: a Critical Review, Mater.Res. Lett. 2 (2014) 107-123. |
[3] | Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the me-chanical properties of equiatomic solid solution alloys with face-centered cu-bic crystal structures, Acta Mater. 81 (2014) 428-441. |
[4] | M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, A novel, single phase, non-e-quiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility, Scr Mater 72-73 (2014) 5-8. |
[5] | B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren, R. Banerjee, Optimiz-ing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy, Mater.Des. 121 (2017) 254-260. |
[6] | D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang, High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures, Acta Mater. 123 (2017) 285-294. |
[7] | F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (2013) 5743-5755. |
[8] | Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, T.G. Nieh, An assessment on the future development of high-entropy alloys: summary from a recent workshop, Intermetallics 66 (2015) 67-76. |
[9] | M.W. Chen, Y.M. Wang, F.H. Zhou, Ma E, High tensile ductility in a nanostruc-tured metal, Nature 419 (2002) 912-915. |
[10] | Y.M. Zhu, W.W. Sun, R. Marceau, L.Y. Wang, Q. Zhang, X. Gao, C. Hutchinson, Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity, Science 363 (2019) 972-975. |
[11] | X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, Y.T. Zhu, Heteroge-neous lamella structure unites ultrafine-grain strength with coarse-grain duc-tility, Proc.Natl. Acad. Sci. U.S.A. 112 (2015) 14501-14505. |
[12] | Z. Cheng, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Extra strengthening and work hard-ening in gradient nanotwinned metals, Science 362 (2018) 1925. |
[13] | B. Gan, J.M. Wheeler, Z. Bi, L. Liu, J. Zhang, H. Fu, Superb cryogenic strength of equiatomic CrCoNi derived from gradient hierarchical microstructure, J.Mate-rials Sci. Technol. 35 (2019) 957-961. |
[14] | X.L. Wu, Y.T. Zhu, Heterogeneous materials: a new class of materials with un-precedented mechanical properties, Mater.Res. Lett. 5 (2017) 527-532. |
[15] | Y.T. Zhu, X.L. Wu, Perspective on hetero-deformation induced (HDI) hardening and back stress, Mater.Res. Lett. 7 (2019) 393-398. |
[16] | S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy, Scr.Mater. 108 (2015) 44-47. |
[17] | Z. Huang, Y. Cao, J. Nie, H. Zhou, Y. Li, Microstructures and Mechanical Proper-ties of Commercially Pure Ti Processed by Rotationally Accelerated Shot Peen-ing, Materials (Basel) 11 (2018) 366-376. |
[18] | X. Wang, Y.S. Li, Q. Zhang, Y.H. Zhao, Y.T. Zhu, Gradient Structured Copper by Rotationally Accelerated Shot Peening, J.Mater. Sci. Technol. 33 (2017) 758-761. |
[19] | M. Wen, G. Liu, J.F. Gu, W.M. Guan, J. Lu, Dislocation evolution in titanium dur-ing surface severe plastic deformation, Appl.Surf. Sci. 255 (2009) 6097-6102. |
[20] | C.B. Carter, S.M. Holmes, The stacking-fault energy of nickel. The Philosophical Magazine: a, J.Theor. Exp. Appl. Phys. 35 (2006) 1161-1172. |
[21] | A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, J.Minerals Metals Mater. Soc. 65 (2013) 1780-1789. |
[22] | L. Kruger, O. Grassel, G. Frommeyer, L.W. Meyer, High strength Fe ±Mn ± (Al, Si) TRIP/TWIP steels development-properties-application, Int.J. Plast. 16 (2000) 1391-1409. |
[23] | M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, J.W. Yeh, Criterion for Sigma Phase Formation in Cr-and V-Containing High-Entropy Alloys, Mater.Res. Lett. 1 (2013) 207-212. |
[24] | F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater 61 (2013) 2628-2638. |
[25] | Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, M.C. Gao, Guidelines in predicting phase formation of high-entropy alloys, MRS Commun. 4 (2014) 57-62. |
[26] | S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109 (2011) 103505. |
[27] | W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Mater. 116 (2016) 332-342. |
[28] | H.M. Daoud, A. Manzoni, R. Völkl, N. Wanderka, U. Glatzel, Microstructure and Tensile Behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) High-Entropy Alloy, J.Min-erals Metals Mater. Soc. 65 (2013) 1805-1814. |
[29] | S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, J. Li, Strengthening of nanoprecipi-tations in an annealed Al0.5CoCrFeNi high entropy alloy, Mater.Sci. Eng. 671 (2016) 82-86. |
[30] | Z. Wang, I. Baker, Effects of annealing and thermo-mechanical treatment on the microstructures and mechanical properties of a carbon-doped FeNiMnAl multi-component alloy, Mater.Sci. Eng. 693 (2017) 101-110. |
[31] | T.T. Zuo, S.B. Ren, P.K. Liaw, Y. Zhang, Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy, Int.J. Minerals Metallurgy Mater. 20 (2013) 549-555. |
[32] | J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, X. Fan, Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy, Mater.Chem. Phys. 210 (2018) 136-145. |
[33] | J. Hou, M. Zhang, H. Yang, J. Qiao, Deformation Behavior of Al0.25CoCrFeNi High-Entropy Alloy after Recrystallization, Metals (Basel) 7 (2017) 111. |
[34] | Z. Wang, I. Baker, W. Guo, J.D. Poplawsky, The effect of carbon on the mi-crostructures, mechanical properties, and deformation mechanisms of ther-mo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys, Acta Mater. 126 (2017) 346-360. |
[35] | Z. Fu, B.E. MacDonald, Z. Li, Z. Jiang, W. Chen, Y. Zhou, E.J. Lavernia, Engineering heterostructured grains to enhance strength in a single-phase high-entropy alloy with maintained ductility, Mater. Res. Lett. 6 (2018) 634-640. |
[36] | Y.L. Zhao, T. Yang, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, K.Lu J.J.Kai, Y. Liu, C.T. Liu, Multicomponent intermetallic nanoparticles and su-perb mechanical behaviors ofcomplex alloys, Science 362 (2018) 933-937. |
[37] | Y.L. Zhao, T. Yang, J.H. Zhu, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Devel-opment of high-strength Co-free high-entropy alloys hardened by nanosized precipitates, Scr.Mater. 148 (2018) 51-55. |
[38] | T. Yang, Y.L. Zhao, J.H. Luan, B. Han, J. Wei, J.J. Kai, C.T. Liu, Nanoparti-cles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy, Scr.Mater. 164 (2019) 30-35. |
[49] | J. Hirth, J. Lothe, Theory of Dislocation, Wiley, New York, 1982. |
[40] | M.C. Fivel, L. Dupuy, A study of dislocation junctions in FCC metals by an ori-entation dependent line tension model, Acta Mater. 50 (2002) 4873-4885. |
[41] | X.L. Wu, Y.T. Zhu, Y.G. Wei, Q. Wei, Strong strain hardening in nanocrystalline nickel, Phys.Rev. Lett. 103 (2009) 205504. |
[42] | J. Su, D. Raabe, Z. Li, Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy, Acta Mater. 163 (2019) 40-54. |
[43] | H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering, Acta Mater. 61 (2013) 2769-2782. |
[44] | L. Fan, T. Yang, Y. Zhao, J. Luan, G. Zhou, H. Wang, Z. Jiao, C.T. Liu, Ultrahigh strength and ductility in newly developed materials with coherent nanolamel-lar architectures, Nat.Commun. 11 (2020) 6240. |
[45] | S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Real-time observations of TRIP-induced ultrahigh strain hardening in a du-al-phase CrMnFeCoNi high-entropy alloy, Nat.Commun. 11 (2020) 826. |
[46] | D. Raabe, I.G. Urrutia, Dislocation and twin substructure evolution during strain hardening of an Fe-22wt.% Mn-0.6wt.% C TWIP steel observed by elec-tron channeling contrast imaging, Acta Mater. 59 (2011) 6449-6463. |
[47] | W. Wu, M. Song, S. Ni, J. Wang, Y. Liu, B. Liu, X. Liao, Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion, Sci.Rep. 7 (2017) 46720. |
[48] | Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, K. Lu, Tensile properties of copper with nano-scale twins, Scr.Mater. 52 (2005) 989-994. |
[49] | E. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. B (64) (1951) 747-753. |
[50] | R.S. Ganji, P. Sai Karthik, K. Bhanu Sankara Rao, K.V. Rajulapati, Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro-and nanoindentation methods, Acta Mater. 125 (2017) 58-68. |
[1] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[2] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[3] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[4] | S.M. Liang, H.M. Ji, X.W. Li. A high-strength and high-toughness nacreous structure in a deep-sea Nautilus shell: Critical role of platelet geometry and organic matrix [J]. J. Mater. Sci. Technol., 2021, 88(0): 189-202. |
[5] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[6] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[7] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[8] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[9] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[10] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[11] | Kun Wang, Xian Tong, Jixing Lin, Aiping Wei, Yuncang Li, Matthew Dargusch, Cuie Wen. Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity [J]. J. Mater. Sci. Technol., 2021, 74(0): 216-229. |
[12] | Jingyu Pang, Hongwei Zhang, Long Zhang, Zhengwang Zhu, Huameng Fu, Hong Li, Aimin Wang, Zhengkun Li, Haifeng Zhang. Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping [J]. J. Mater. Sci. Technol., 2021, 78(0): 74-80. |
[13] | Jie Xu, Xuan Kong, Minghui Chen, Qunchang Wang, Fuhui Wang. High-entropy FeNiCoCr alloys with improved mechanical and tribological properties by tailoring composition and controlling oxidation [J]. J. Mater. Sci. Technol., 2021, 82(0): 207-213. |
[14] | Lili Xiao, Ping Huang, Fei Wang. Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 86(0): 251-259. |
[15] | Chendong Zhao, Jinshan Li, Yudong Liu, Xiao Ma, Yujie Jin, William Yi Wang, Hongchao Kou, Jun Wang. Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation [J]. J. Mater. Sci. Technol., 2021, 86(0): 117-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||