J. Mater. Sci. Technol. ›› 2021, Vol. 92: 186-194.DOI: 10.1016/j.jmst.2021.03.040
• Research Article • Previous Articles Next Articles
Yuanyuan Chena, Yuan Huanga,*(), Fei Lia, Lu Hana, Dongguang Liub, Laima Luob, Zongqing Maa, Yongchang Liua, Zumin Wanga,*(
)
Received:
2021-01-05
Revised:
2021-03-12
Accepted:
2021-03-14
Published:
2021-11-30
Online:
2021-05-08
Contact:
Yuan Huang,Zumin Wang
About author:
z.wang@tju.edu.cn (Z. Wang).Yuanyuan Chen, Yuan Huang, Fei Li, Lu Han, Dongguang Liu, Laima Luo, Zongqing Ma, Yongchang Liu, Zumin Wang. High-strength diffusion bonding of oxide-dispersion-strengthened tungsten and CuCrZr alloy through surface nano-activation and Cu plating[J]. J. Mater. Sci. Technol., 2021, 92: 186-194.
Fig. 2. XRD patterns of the ODS-W samples. (a) as-prepared bulk; (b) after anodization; and (c) after sequential anodization and deoxidation annealing.
Fig. 3. SEM images and EDS compositional analyses of ODS-W. (a) after anodization; (b) locally magnified SEM image in (a); (c) after sequential anodization and deoxidation annealing; and (d) locally magnified SEM image in (c). The local elemental compositions at different surface regions, as determined by quantifications of the locally collected O K, W M and Y L EDS lines, are presented in the inserted tables.
Fig. 5. Surface SEM images of annealed ODS-W with about (a) 300 nm and (b) 1 μm thick Cu coating (c) XRD patterns of ODS-W with about 300 nm Cu coating (I) before and (II) after annealing, and ODS-W with 1 μm thick Cu coating (III) before and (IV) after annealing.
Fig. 6. (a) Back scattered electron (BSE) image of the ODS-W/CuCrZr joint (b) Vickers microhardness distribution along the cross-section of the ODS-W/CuCrZr joint.
Fig. 7. C-scan images of the ODS-W/CuCrZr composite panels prepared by (a) the three-step process (b) direct diffusion bonding. The colors in the C-scan images indicate the normalized amplitudes of echo signals in the time domain, where red indicates the unbonded area, blue indicates perfectly bonded area, and intermediate colors indicate general bonded areas. (c) Stress-strain curves of the ODS-W/CuCrZr shear test joint prepared by the three-step process and direct diffusion bonding.
W based alloy | Cu based alloy | Joining method | Strength (MPa) | Reference |
---|---|---|---|---|
ODS-W | CuCrZr | Three-step process | 201* | This work |
ODS-W | CuCrZr | Direct diffusion bonding | 128* | This work |
W | Cu | Vacuum diffusion bonding | 146▲ | [ |
W | Cu | Hot pressing joining | 186* | [ |
W | Cu | Direct diffusion bonding | 172▲ | [ |
W | Cu | Vacuum diffusion bonding | 100* | [ |
Table 1 Strength of W-based alloy/Cu-based alloy joints formed using different joining methods.
W based alloy | Cu based alloy | Joining method | Strength (MPa) | Reference |
---|---|---|---|---|
ODS-W | CuCrZr | Three-step process | 201* | This work |
ODS-W | CuCrZr | Direct diffusion bonding | 128* | This work |
W | Cu | Vacuum diffusion bonding | 146▲ | [ |
W | Cu | Hot pressing joining | 186* | [ |
W | Cu | Direct diffusion bonding | 172▲ | [ |
W | Cu | Vacuum diffusion bonding | 100* | [ |
Fig. 8. (a) SEM image and (b) corresponding EDS mapping of the shear fracture surface from the CuCrZr side of the ODS-W/CuCrZr joint, and (c) SEM image and (d) corresponding EDS mapping of the shear fracture surface from the ODS-W side of the ODS-W/CuCrZr joint.
Fig. 9. (a) TEM images of the interface structure between ODS-W and plated Cu, (b) the enlarged image of the yellow rectangle in (a) and corresponding FFT patterns of the different areas, and (c) the HRTEM images of yellow rectangle in (b) and corresponding FFT patterns of the different areas.
[1] |
D.G. Liu, L. Zheng, L.M. Luo, X. Zan, J.-P. Song, Q. Xu, X.Y. Zhu, Y.C. Wu, J. Alloys Compd. 765 (2018) 299-312.
DOI URL |
[2] |
C. Sun, S. Wang, W. Guo, W. Shen, C. Ge, J. Materials Sci. Technol. 30 (12) (2014) 1230-1234.
DOI URL |
[3] |
Y. Wang, S. Wang, Q. Ye, Q. Yan, C. Ge, J. Mater. Sci. Technol. 32 (12) (2016) 1386-1392.
DOI URL |
[4] |
M. Wirtz, J. Linke, G. Pintsuk, L. Singheiser, M. Zlobinski, J. Nucl. Mater. 438 (2013) S833-S836.
DOI URL |
[5] |
H.X. Yan, J.L. Fan, Y. Han, Q. Yao, T. Liu, Y.Q. Lv, C.G. Zhang, Vacuum 165 (2019) 19-25.
DOI URL |
[6] | X.Y. Tan, P. Li, L.M. Luo, Q. Xu, K. Tokunaga, X. Zan, Y.C. Wu, Nucl. Mater. Energy 9 (2016) 399-404. |
[7] |
X. Tan, L. Luo, H. Chen, X. Zhu, X. Zan, G. Luo, J. Chen, P. Li, J. Cheng, D. Liu, Y. Wu, Sci Rep 5 (2015) 12755.
DOI URL |
[8] | J. Zhang, Y. Huang, Y. Liu, Z. Wang, Mater. Design 137 (2018) 473-480. |
[9] |
P. Chen, Q. Shen, G. Luo, C. Wang, M. Li, L. Zhang, X. Li, B. Zhu, Surf. Coat. Technol. 288 (2016) 8-14.
DOI URL |
[10] |
Z. Chen, Y.-Y. Lian, X. Liu, F. Feng, B.-Y. Yan, J.-B. Wang, Y.-W. Lv, J.-P. Song, C.-J. Liu, L.-Z. Cai, Tungsten 2 (1) (2020) 83-93.
DOI URL |
[11] | G. Yao, L.-M. Luo, X.-Y. Tan, X. Zan, Q. Xu, X.-Y. Zhu, E.-Y. Lu, X.-Z. Cao, J.-G. Cheng, Y.-C. Wu, Materialia 6(2019). |
[12] |
G. Yao, X.-Y. Tan, M.-Q. Fu, L.-M. Luo, X. Zan, Q. Xu, J.-Q. Liu, X.-Y. Zhu, J.-G. Cheng, Y.-C. Wu, Fusion Eng. Des. 137 (2018) 325-330.
DOI URL |
[13] |
M.A. Yar, S. Wahlberg, H. Bergqvist, H.G. Salem, M. Johnsson, M. Muhammed, J. Nucl. Mater. 408 (2011) 129-135.
DOI URL |
[14] |
M.A. Yar, S. Wahlberg, H. Bergqvist, H.G. Salem, M. Johnsson, M. Muhammed, J. Nucl. Mater. 412 (2) (2011) 227-232.
DOI URL |
[15] |
R. Liu, X.P. Wang, T. Hao, C.S. Liu, Q.F. Fang, J. Nucl. Mater. 450 (1-3) (2014) 69-74.
DOI URL |
[16] |
Y.X. Zhang, X.Y. Tan, X. Zan, L.M. Luo, Y. Xu, Q. Xu, K. Tokunaga, X.Y. Zhu, Y.C. Wu, Fusion Eng. Des. 148 (2019) 111321.
DOI URL |
[17] | Z. Dong, N. Liu, W. Hu, Z. Ma, C. Li, C. Liu, Q. Guo, Y. Liu, Journal of Materials Science & Technology 36 (2020) 118-127. |
[18] | W. Hu, Z. Dong, L. Yu, Z. Ma, Y. Liu, Journal of Materials Science & Technology 36 (2020) 84-90. |
[19] |
L. Veleva, Z. Oksiuta, U. Vogt, N. Baluc, Fusion Eng. Des. 84 (7-11) (2009) 1920-1924.
DOI URL |
[20] |
K. Yang, W. Li, X. Guo, X. Yang, Y. Xu, Journal of Mater. Sci. Technol. 34 (9) (2018) 1570-1579.
DOI URL |
[21] |
Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Z.A. Alothman, Y. Yamauchi, A.H.M. Shahriar, Y. Liu, Sci Rep 7 (1) (2017) 6051.
DOI PMID |
[22] |
Y. Kim, K.H. Lee, E.-P. Kim, D.-I. Cheong, S.H. Hong, Int. J. Refract. Met. Hard Mater 27 (5) (2009) 842-846.
DOI URL |
[23] |
M.A. Yar, S. Wahlberg, H. Bergqvist, H.G. Salem, M. Johnsson, M. Muhammed, J. Nucl. Mater. 408 (2) (2011) 129-135.
DOI URL |
[24] | D. Jiang, J. Long, M. Cai, Y. Lin, P. Fan, H. Zhang, M. Zhong, Mater. Design 114 (2017) 185-193. |
[25] |
W. Krauss, J. Lorenz, J. Konys, E. Gaganidze, Fusion Eng. Des. 124 (2017) 220-225.
DOI URL |
[26] |
F.L. Chong, J.L. Chen, J.G. Li, Mater. Design 29 (8) (2008) 1675-1678.
DOI URL |
[27] |
J. Zhang, Y. Huang, Z. Wang, Y. Liu, J. Alloys Compd. 774 (2019) 939-947.
DOI URL |
[28] |
W. Chen, L. Dong, H. Zhang, J. Song, N. Deng, J. Wang, Mater. Lett. 205 (2017) 198-201.
DOI URL |
[29] |
P. Zhao, S. Guo, G. Liu, Y. Chen, J. Li, J. Alloys Compd. 601 (2014) 289-292.
DOI URL |
[30] | C. Hou, X. Song, F. Tang, Y. Li, L. Cao, J. Wang, Z. Nie, NPG Asia Mater. 11 (1) (2019). |
[31] |
S. Wang, Y.H. Ling, J.J. Wang, G.Y. Xu, Vacuum 114 (2015) 58-65.
DOI URL |
[32] |
D. Jiang, J. Long, J. Han, M. Cai, Y. Lin, P. Fan, H. Zhang, M. Zhong, Mater. Sci. Eng. A 696 (2017) 429-436.
DOI URL |
[33] | C. Zhao, F. Li, Y. Chen, Y. Huang, Z. Wang, Fusion Eng. Des. 151(2020). |
[34] | G.M. Kalinin, S.A. Fabritziev, B.N. Singh, S. Tahtinen, S.J. Zinkle, J. Nucl. Mater. 307 (2002) 668-672. |
[35] |
J. Wang, L. Han, X. Li, D. Liu, L. Luo, Y. Huang, Y. Liu, Z. Wang, J. Mater. Sci. Technol. 65 (2021) 202-209.
DOI URL |
[36] |
K. Yang, W. Li, C. Huang, X. Yang, Y. Xu, J. Mater. Sci. Technol. 34 (11) (2018) 2167-2177.
DOI |
[37] |
J. Zhang, Y. Huang, Z. Wang, Y. Liu, Nanotechnology 30 (1) (2019) 015603.
DOI URL |
[38] |
J. Du, C. Li, Z. Wang, Y. Huang, J. Mater. Sci. Technol. 65 (2021) 18-28.
DOI URL |
[39] | M. Merola, M. Akiba, V. Barabash, I.M. d, 307-311 (2002) 1524-1532. |
[40] |
Q. Cai, W. Liu, Z. Zhao, Y. Ma, C. Liang, Fusion Eng. Des. 125 (2017) 189-194.
DOI URL |
[41] |
J.T. Xiong, J.R. Sun, J.C. Wang, H. Zhang, J.M. Shi, J.L. Li, J. Manuf. Processes 47 (2019) 238-243.
DOI URL |
[42] |
S.S. Kumar, B. Ravisankar, Mater. Manuf. Processes 31 (16) (2015) 2084-2090.
DOI URL |
[1] | Guoqing Chen, Qianxing Yin, Jian Cao, Ge Zhang, Gongbo Zhen, Binggang Zhang. Electron beam surface heating-diffusion bonding: An effective joining method for aluminum alloy metal-matrix composite with high SiC volume [J]. J. Mater. Sci. Technol., 2021, 88(0): 109-118. |
[2] | Z.Y. Zhang, L.X. Sun, N.R. Tao. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48(0): 18-22. |
[3] | Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 59-69. |
[4] | S.D. Ji, Q. Wen, Z.W. Li. A novel friction stir diffusion bonding process using convex-vortex pin tools [J]. J. Mater. Sci. Technol., 2020, 48(0): 23-30. |
[5] | Li Fuping,Li Jinshan,Kou Hongchao,Zhou Lian. Anisotropic Porous Ti6Al4V Alloys Fabricated by Diffusion Bonding: Adaption of Compressive Behavior to Cortical Bone Implant Applications [J]. J. Mater. Sci. Technol., 2016, 32(9): 937-943. |
[6] | Chao Zhang, Hong Li, Miaoquan Li. Detailed Evolution Mechanism of Interfacial Void Morphology in Diffusion Bonding [J]. J. Mater. Sci. Technol., 2016, 32(3): 259-264. |
[7] | Chen Haiyan, Cao Jian, Song Xiaoguo, Liu Jiakun, Feng Jicai. Characterization, Removal and Evaluation of Oxide Film in the Diffusion Bonding of Zr55Cu30Ni5Al10 Bulk Metallic Glass [J]. J. Mater. Sci. Technol., 2014, 30(7): 722-730. |
[8] | Shaily M. Bhola, Sukumar Kundu, Rahul Bhola, Brajendra Mishra, Subrata Chatterjee. Electrochemical Study of Diffusion Bonded Joints between Micro-duplex Stainless Steel and Ti6Al4V Alloy [J]. J. Mater. Sci. Technol., 2014, 30(2): 163-171. |
[9] | Congxiao Sun, Shuming Wang, Wenhao Guo, Weiping Shen, Changchun Ge. Bonding Interface of W-CuCrZr Explosively Welded Composite Plates for Plasma Facing Components [J]. J. Mater. Sci. Technol., 2014, 30(12): 1230-1234. |
[10] | H. Sabetghadam, A. Zarei Hanzaki, A. Araee, A. Hadian. Microstructural Evaluation of 410 SS/Cu Diffusion-Bonded Joint [J]. J Mater Sci Technol, 2010, 26(2): 163-169. |
[11] | Jianying Zou,Yuyou Cui,Rui Yang. Diffusion Bonding of Dissimilar Intermetallic Alloys Based on Ti2AlNb and TiAl [J]. J Mater Sci Technol, 2009, 25(06): 819-824. |
[12] | Bulent Kurt,Mustafa Ulutan. Interfacial Microstructure of Diffusion Bonded Inconel 738 and Ferritic Stainless Steel Couple [J]. J Mater Sci Technol, 2009, 25(04): 527-530. |
[13] | Wei GUO, Xihua ZHAO, Minxia SONG, Jicai FENG, Biao YANG. Diffusion Bonding of Ti-6Al-4V to QAl 10-3-1.5 with Ni/Cu Interlayers [J]. J Mater Sci Technol, 2006, 22(06): 817-820. |
[14] | Jihua HUANG, Yueling DONG, Jiangang ZHANG, Yun WAN, Guoan ZHOU. Reactive Diffusion Bonding of SiCp/Al Composites by Insert Powder Layers with Eutectic Composition [J]. J Mater Sci Technol, 2005, 21(05): 779-781. |
[15] | Wenbo HAN, Kaifeng ZHANG, Guofeng WANG, Xiaojun ZHANG. Superplastic Forming and Diffusion Bonding for Sandwich Structure of Ti-6Al-4V Alloy [J]. J Mater Sci Technol, 2005, 21(01): 60-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||