J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (9): 937-943.DOI: 10.1016/j.jmst.2016.08.007
• Orginal Article • Previous Articles Next Articles
Li Fuping,Li Jinshan,Kou Hongchao(),Zhou Lian
Received:
2015-07-09
Accepted:
2015-11-12
Online:
2016-09-20
Published:
2016-11-02
Contact:
Kou Hongchao
Li Fuping,Li Jinshan,Kou Hongchao,Zhou Lian. Anisotropic Porous Ti6Al4V Alloys Fabricated by Diffusion Bonding: Adaption of Compressive Behavior to Cortical Bone Implant Applications[J]. J. Mater. Sci. Technol., 2016, 32(9): 937-943.
Type | Pore size, L/μm | Wire diameter, D/μm | Aspect ratio (D/L)a |
---|---|---|---|
I | 900 | 200 | 0.22 |
II | 650 | 200 | 0.31 |
III | 400 | 80 | 0.20 |
Table 1 Pore structure parameters of three types of Ti6Al4V alloy meshes
Type | Pore size, L/μm | Wire diameter, D/μm | Aspect ratio (D/L)a |
---|---|---|---|
I | 900 | 200 | 0.22 |
II | 650 | 200 | 0.31 |
III | 400 | 80 | 0.20 |
Fig. 2. Porous Ti6Al4V alloy with 70% porosity fabricated by diffusion bonding using type II meshes (a); representative SEM images in the out-of-plane (b) and in-plane (c) directions; Mesh hinges formed during diffusion bonding (d).
Fig. 3. Pore size distribution of porous Ti6Al4V alloys fabricated using Type II meshes: (a) 70% porosity; (b) 30% porosity. The inserted graphs represent the reconstructed 3D model from Micro-CT scan for calculating pore size.
Fig. 4. Nominal compressive stress-strain curves in the out-of-plane direction for porous Ti6Al4V alloys fabricated at 950?°C using Type II meshes. The insert graphs show images of porous Ti6Al4V samples after compression: (a) 70% porosity at 40% nominal strain; (b) 30% porosity at 50% nominal strain.
Fig. 6. Microstructure of porous Ti6Al4V alloys fabricated by Type II meshes at different diffusion bonding temperatures: (a) 850?°C, (b) 950?°C and (c) 970?°C.
Fig. 7. Relationship between compressive properties and relative density for porous Ti6Al4V alloys fabricated at 950?°C using Type II meshes: (a) Young's modulus; (b) yield stress.
Fig. 8. Comparison of yield stress for porous titanium and porous Ti6Al4V alloys fabricated by different methods[8], [10], [18], [27], [46], [47] and [48].
|
[1] | Xiankun Ji, Baoqi Guo, Fulin Jiang, Hong Yu, Dingfa Fu, Jie Teng, Hui Zhang, John J.Jonas. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain [J]. J. Mater. Sci. Technol., 2020, 36(0): 160-166. |
[2] | Ke Yue, Jianrong Liu, Haijun Zhang, Hui Yu, Yuanyuan Song, Qingmiao Hu, Qingjiang Wang, Rui Yang. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36(0): 91-96. |
[3] | Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 59-69. |
[4] | Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39(0): 56-73. |
[5] | Hao Wu, Yunlei Xu, Zhihao Wang, Zhenhua Liu, Qinggang Li, Jinkai Li, Junyan Wu. The influence of solute atom ordering on the deformation behavior of hexagonal close packed Ti-Al alloys [J]. J. Mater. Sci. Technol., 2020, 52(0): 235-242. |
[6] | Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 1-9. |
[7] | Zhihong Wu, Hongchao Kou, Nana Chen, Mengqi Zhang, Ke Hua, Jiangkun Fan, Bin Tang, Jinshan Li. Duality of the fatigue behavior and failure mechanism in notched specimens of Ti-7Mo-3Nb-3Cr-3Al alloy [J]. J. Mater. Sci. Technol., 2020, 50(0): 204-214. |
[8] | S.D. Ji, Q. Wen, Z.W. Li. A novel friction stir diffusion bonding process using convex-vortex pin tools [J]. J. Mater. Sci. Technol., 2020, 48(0): 23-30. |
[9] | Lei Cao, Ihsan Ullah, Na Li, Shiyu Niu, Rujie Sun, Dandan Xia, Rui Yang, Xing Zhang. Plasma spray of biofunctional (Mg, Sr)-substituted hydroxyapatite coatings for titanium alloy implants [J]. J. Mater. Sci. Technol., 2019, 35(5): 719-726. |
[10] | Z.B. Zhao, Z. Liu, Q.J. Wang, J.R. Liu, R. Yang. Analysis of local crystallographic orientation in an annealed Ti60 billet [J]. J. Mater. Sci. Technol., 2019, 35(4): 591-595. |
[11] | Jinhu Zhang, Jinmin Liu, Dongsheng Xu, Jie Wu, Lei Xu, Rui Yang. Characterization of the prior particle boundaries in a powder metallurgy Ti2AlNb alloy [J]. J. Mater. Sci. Technol., 2019, 35(11): 2513-2525. |
[12] | Zhongwei Ma, Yanye Jin, Shude Ji, Xiangchen Meng, Lin Ma, Qinghua Li. A general strategy for the reliable joining of Al/Ti dissimilar alloys via ultrasonic assisted friction stir welding [J]. J. Mater. Sci. Technol., 2019, 35(1): 94-99. |
[13] | Cheng Pengfei,Zhao Changli,Han Pei,Ni Jiahua,Zhang Shaoxiang,Zhang Xiaonong,Chai Yimin. Site-Dependent Osseointegration of Biodegradable High-Purity Magnesium for Orthopedic Implants in Femoral Shaft and Femoral Condyle of New Zealand Rabbits [J]. J. Mater. Sci. Technol., 2016, 32(9): 883-888. |
[14] | Yujing Liu, Shujun Li, Wentao Hou, Shaogang Wang, Yulin Hao, Rui Yang, Timothy B. Sercombe, Lai-Chang Zhang. Electron Beam Melted Beta-type Ti-24Nb-4Zr-8Sn Porous Structures With High Strength-to-Modulus Ratio [J]. J. Mater. Sci. Technol., 2016, 32(6): 505-508. |
[15] | C.H. Ng, O.K. Chan, H.C. Man , . Formation of TiN Grid on NiTi by Laser Gas Nitriding for Improving Wear Resistance in Hanks' Solution [J]. J. Mater. Sci. Technol., 2016, 32(5): 459-464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||