J. Mater. Sci. Technol. ›› 2021, Vol. 87: 74-82.DOI: 10.1016/j.jmst.2021.01.044
• Research Article • Previous Articles Next Articles
Yaoxiang Duana, Han Chena,*(), Zhe Chena,*(
), Lei Wangb, Mingliang Wangb, Jun Liub, Fengguo Zhangb, Haowei Wanga
Received:
2020-11-23
Revised:
2021-01-07
Accepted:
2021-01-18
Published:
2021-10-10
Online:
2021-03-11
Contact:
Han Chen,Zhe Chen
About author:
zhe.chen@sjtu.edu.cn (Z. Chen).Yaoxiang Duan, Han Chen, Zhe Chen, Lei Wang, Mingliang Wang, Jun Liu, Fengguo Zhang, Haowei Wang. The influence of nanosized precipitates on Portevin-Le Chatelier bands and surface roughness in AlMgScZr alloy[J]. J. Mater. Sci. Technol., 2021, 87: 74-82.
Fig. 1. Images of the extensometer: (a) the extensometer is opening; (b) the extensometer is closing; (c) schematic illustration of the tensile specimen.
Fig. 2. Characterization on small Al3(Sc1-xZrx) precipitates of AlMgScZr-623 K/3 h sample: (a) bright-TEM image; (b) HRTEM image of a small Al3(Sc1-xZrx) precipitate; (c) and (d) the corresponding IFFT images of (b). The inset in (a) is the SAED of the precipitates. [001] Al and [001] P refer to the [001] zone axis of aluminum matrix and precipitates. The dashed circles in (b), (c) and (d) represent an overlap of precipitate and aluminum matrix. No misfit dislocations are observed, indicating a fully coherent interface. The orientation relationship of Al matrix and Al3(Sc1-xZrx) precipitates is [001] Al // [001] P, (200) Al // (200) P for both two samples (Al is the aluminum matrix; P is precipitate).
Fig. 3. Characterization on large Al3(Sc1-xZrx) precipitates of AlMgScZr-813 K/24 h sample: (a) bright-TEM image; (b) HRTEM image of a large Al3(Sc1-xZrx) precipitate; (c) and (d) the corresponding IFFT images of (b). The inset in (a) is the SAED of the precipitates. [001] Al and [001] P refer to the [001] zone axis of aluminum matrix and precipitates. The dashed circles in (b), (c) and (d) represent an overlap of precipitate and aluminum matrix. Lots of misfit dislocations are observed, indicating a fully semi-coherent interface. The orientation relationship of Al matrix and Al3(Sc1-xZrx) precipitates is [001] Al // [001] P, (200) Al // (200) P for both two samples (Al is the aluminum matrix; P is precipitate).
Sample | Average radius (nm) | Volume fraction (%) | Average precipitates spacing (nm) |
---|---|---|---|
AlMg | — | — | — |
AlMgScZr-623 K/3 h | 2.5 ± 0.68 | 0.46 | 49.25 |
AlMgScZr-813 K/24 h | 22.6 ± 4.91 | 0.40 | 480.10 |
Table 1 Average radius, volume fraction and inter-distance of Al3(Sc1-xZrx) precipitates for AlMgScZr-623 K/3 h and AlMgScZr-813 K/24 h samples [29].
Sample | Average radius (nm) | Volume fraction (%) | Average precipitates spacing (nm) |
---|---|---|---|
AlMg | — | — | — |
AlMgScZr-623 K/3 h | 2.5 ± 0.68 | 0.46 | 49.25 |
AlMgScZr-813 K/24 h | 22.6 ± 4.91 | 0.40 | 480.10 |
Fig. 4. EBSD misorientation maps for alloys: (a) AlMg sample; (b) AlMgScZr-623 K/3 h sample; (c) AlMgScZr-813 K/24 h sample. The insets are corresponding equiaxed grain size distribution histogram. ED is the extrusion direction.
Fig. 5. (a) Engineering stress-strain curves of AlMg and two AlMgScZr alloys in a strain rate of 0.05 s-1 at 298 K; (b) the enlarged view of the dotted rectangle in (a); (c) the stress-time (black) and strain-time (orange) results of steps in (b); (d) mean stress amplitude and step number versus mean radius of Al3(Sc1-xZrx) precipitates for AlMg and two AlMgScZr alloys. The AlMg alloy does not have precipitates, and its mean precipitate radius is zero.
Fig. 6. Representative surface topography images for AlMg specimens after 12% tensile strain: (a) optical microscopic (OM) image; (b) two-dimensional (2D) image; (c) three-dimensional (3D) image. The two AlMgScZr alloys exhibit similar surface topography images. For simplicity, the images for these two samples are not shown here. ED is the extrusion direction.
Samples | Sa (μm) | Ra (μm) |
---|---|---|
AlMg | 0.875 ± 0.215 | 0.369 ± 0.093 |
AlMgScZr-623 K/3 h | 0.645 ± 0.149 | 0.261 ± 0.049 |
AlMgScZr-813 K/24 h | 0.783 ± 0.194 | 0.283 ± 0.059 |
Table 2 Mean surface roughness Sa and line roughness Ra of AlMg and two AlMgScZr alloys after 12% tensile strain.
Samples | Sa (μm) | Ra (μm) |
---|---|---|
AlMg | 0.875 ± 0.215 | 0.369 ± 0.093 |
AlMgScZr-623 K/3 h | 0.645 ± 0.149 | 0.261 ± 0.049 |
AlMgScZr-813 K/24 h | 0.783 ± 0.194 | 0.283 ± 0.059 |
Parameter | Significance | Value | Origin |
---|---|---|---|
b | Burgers vector | 0.286 nm | - |
M | Taylor factor | 3.06 | [ |
R | Average radius of precipitates | Seen Table 1 | This study |
f | Volume fraction of precipitates | Seen Table 1 | This study |
λp | Precipitate spacing | Seen Table 1 | This study |
GAl | Shear modulus of aluminum | 25.4 GPa | [ |
GP | Shear modulus of precipitate | 67.6 GPa | [ |
ΔG | GP - GAl | 42.2 GPa | [ |
νAl | Poisson’s ratio of aluminum | 0.345 | [ |
δ | Lattice parameter mismatch | 0.0125 | [ |
ε | Constrained lattice parameter mismatch | 0.0083 | [ |
γAPB | Antiphase boundary free energy for (111) plane of Al3Sc | 0.5 J m-2 | [[ |
m | A constant | 0.85 | [ |
χ | A constant | 2.6 | [ |
$\bar{R}$ | Mean planer radius of a circular cross-section in a random plane for spherical precipitates | $\sqrt{\frac{2}{3}}R$ | [ |
Table 3 Summary of the parameters used for calculating strengthening increments.
Parameter | Significance | Value | Origin |
---|---|---|---|
b | Burgers vector | 0.286 nm | - |
M | Taylor factor | 3.06 | [ |
R | Average radius of precipitates | Seen Table 1 | This study |
f | Volume fraction of precipitates | Seen Table 1 | This study |
λp | Precipitate spacing | Seen Table 1 | This study |
GAl | Shear modulus of aluminum | 25.4 GPa | [ |
GP | Shear modulus of precipitate | 67.6 GPa | [ |
ΔG | GP - GAl | 42.2 GPa | [ |
νAl | Poisson’s ratio of aluminum | 0.345 | [ |
δ | Lattice parameter mismatch | 0.0125 | [ |
ε | Constrained lattice parameter mismatch | 0.0083 | [ |
γAPB | Antiphase boundary free energy for (111) plane of Al3Sc | 0.5 J m-2 | [[ |
m | A constant | 0.85 | [ |
χ | A constant | 2.6 | [ |
$\bar{R}$ | Mean planer radius of a circular cross-section in a random plane for spherical precipitates | $\sqrt{\frac{2}{3}}R$ | [ |
Fig. 7. Variations of strength increments versus mean precipitate radius and their comparison with experimental results for two AlMgScZr alloys. The solid line is the minimum value of Δσms+Δσcs, Δσos and Δσor which represents the theoretical strength increment. The symbols are experimental tensile results obtained from AlMgScZr-623 K/3 h and AlMgScZr-813 K/24 h samples.
Samples | AlMg | AlMgScZr-623 K/3 h | AlMgScZr-813 K/ 24 h |
---|---|---|---|
Waiting time (%) | 0.121 ± 0.074 | 0.359 ± 0.282 | 0.189 ± 0.137 |
Table 4 Average waiting time of AlMg and two AlMgScZr samples. The average waiting time represents the average value of waiting time during the whole process of tension.
Samples | AlMg | AlMgScZr-623 K/3 h | AlMgScZr-813 K/ 24 h |
---|---|---|---|
Waiting time (%) | 0.121 ± 0.074 | 0.359 ± 0.282 | 0.189 ± 0.137 |
[1] |
B.B. Wang, F.F. Chen, F. Liu, W.G. Wang, P. Xue, Z.Y. Ma, J. Mater. Sci. Technol. 33 (2017) 1009-1014.
DOI |
[2] | G. Yi, W. Zeng, J.D. Poplawsky, D.A. Cullen, Z. Wang, M.L. Free, J. Mater. Sci. Technol. 33 (2017) 991-1003. |
[3] |
H. Xu, X. Liu, D. Zhang, X. Zhang, J. Mater. Sci. Technol. 35 (2019) 1108-1112.
DOI URL |
[4] |
H. Ait-Amokhtar, S. Boudrahem, C. Fressengeas, Scr. Mater. 54 (2006) 2113-2118.
DOI URL |
[5] |
X. Xu, Y. Su, Y. Cai, T. Cheng, Q. Zhang, Exp. Mech. 55 (2015) 1575-1590.
DOI URL |
[6] |
X. Xu, Y. Su, Q. Zhang, Opt. Laser. Eng. 88 (2017) 265-279.
DOI URL |
[7] |
J. Kang, D. Wilkinson, M. Jain, J. Embury, A. Beaudoin, S. Kim, R. Mishira, A. Sachdev, Acta Mater. 54 (2006) 209-218.
DOI URL |
[8] |
H. Halim, D. Wilkinson, M. Niewczas, Acta Mater. 55 (2007) 4151-4160.
DOI URL |
[9] |
J.E. King, C.P. You, J.F. Knott, Acta Metall. 29 (1981) 1553-1566.
DOI URL |
[10] |
A. Leon, E. Aghion, Mater. Charact. 131 (2017) 188-194.
DOI URL |
[11] |
K.H. Fuh, C.F. Wu, Int. J. Mach. Tools Manufact. 35 (1995) 1187-1200.
DOI URL |
[12] |
H. Chen, Z. He, L. Lu, J. Mater. Sci. Technol. 36 (2020) 37-44.
DOI |
[13] |
E. Pink, Acta Metall. 37 (1989) 1773-1781.
DOI URL |
[14] |
D. Thevenet, M. Mliha-Touati, A. Zeghloul, Mater. Sci. Eng. A 266 (1999) 175-182.
DOI URL |
[15] |
S.A. Nalawade, M. Sundararaman, R. Kishore, J.G. Shah, Scr. Mater. 59 (2008) 991-994.
DOI URL |
[16] |
X. Wang, G. Han, C. Cui, S. Guan, T. Jin, X. Sun, Z. Hu, Metall. Mater. Trans. A 47 (2016) 5994-6003.
DOI URL |
[17] | S. Tamimi, A. Andrade-Campos, J. Pinho-da-Cruz, J.Mech. Behav. Mater. 24 (2015) 67-78. |
[18] |
H. Aboulfadl, J. Deges, P. Choi, D. Raabe, Acta Mater. 86 (2015) 34-42.
DOI URL |
[19] |
Y. Cai, C. Tian, G. Zhang, G. Han, S. Yang, S. Fu, C. Cui, Q. Zhang, J. Alloys Compd. 690 (2017) 707-715.
DOI URL |
[20] |
E. Pink, S. Kumar, B. Tian, Mater. Sci. Eng. A 280 (2000) 17-24.
DOI URL |
[21] |
K. Wang, D. Yin, Y. Zhao, A. Atrens, M. Zhao, J. Mater. Res. Technol. 9 (2020) 5077-5089.
DOI URL |
[22] |
J. Bi, Z. Lei, Y. Chen, X. Chen, Z. Tian, N. Lu, X. Qin, J. Liang, J. Mater. Sci. Technol. 69 (2021) 200-211.
DOI URL |
[23] |
D.A. Lange, H.M. Jennings, S.P. Shan, J. Mater. Sci. 28 (1993) 3879-3884.
DOI URL |
[24] |
K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, D.N. Seidman, Acta Mater. 58 (2010) 5184-5195.
DOI URL |
[25] |
K.E. Knipling, D.N. Seidman, D.C. Dunand, Acta Mater. 59 (2011) 943-954.
DOI URL |
[26] |
C. Fuller, J. Murray, D. Seidman, Acta Mater. 53 (2005) 5401-5413.
DOI URL |
[27] |
L. Liu, J.T. Jiang, B. Zhang, W.Z. Shao, L. Zhen, J. Mater. Sci. Technol. 35 (2019) 962-971.
DOI |
[28] |
J. Feng, B. Ye, L. Zuo, R. Qi, Q. Wang, H. Jiang, R. Huang, W. Ding, J. Yao, C. Wang, J. Mater. Sci. Technol. 34 (2018) 2316-2324.
DOI |
[29] | H. Chen, Z. Chen, G. Ji, S.Y. Zhong, H.W. Wang, A. Borbély, Y.B. Ke, Y. Bréchet, Experimental and modelling assessment of ductility in a precipitation hardening AlMgScZr alloy, Inter. J. Plast. 139 (2021) 102971. |
[30] |
T. Böhlke, G. Bondár, Y. Estrin, M.A. Lebyodkin, Comp. Mater. Sci. 44 (2009) 1076-1088.
DOI URL |
[31] |
B. Klusemann, G. Fischer, T. Böhlke, B. Svendsen, Int. J. Plast. 67 (2015) 192-216.
DOI URL |
[32] |
S. Fu, T. Cheng, Q. Zhang, Q. Hu, P. Cao, Acta Mater. 60 (2012) 6650-6656.
DOI URL |
[33] |
H. Ait-Amokhtar, P. Vacher, S. Boudrahem, Acta Mater. 54 (2006) 4365-4371.
DOI URL |
[34] | ISO 25178-2: Geometrical Product Specifications (GPS) - Surface Texture: Areal - Part 2: Terms, Definitions and Surface Texture Parameters, 2012, pp. 1-47. |
[35] |
Y. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater. 178 (2020) 422-427.
DOI URL |
[36] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[37] |
Q. Luo, C. Zhai, Q. Gu, W. Zhu, Q. Li, J. Alloys Compd. 814 (2020), 152297.
DOI URL |
[38] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[39] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[40] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[41] |
E.A. Marquis, D.N. Seidman, Acta Mater. 49 (2001) 1909-1919.
DOI URL |
[42] |
Y. Pang, Q. Li, Int. J. Hydrog. Energy 41 (2016) 18072-18087.
DOI URL |
[43] |
Y. Pang, Q. Li, Scr. Mater. 130 (2017) 223-228.
DOI URL |
[44] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes. Alloys 7 (2019) 58-71.
DOI URL |
[45] |
D.N. Seidman, E.A. Marquis, D.C. Dunand, Acta Mater. 50 (2002) 4021-4035.
DOI URL |
[46] |
H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater. 61 (2013) 2769-2782.
DOI URL |
[47] |
E. Clouet, M. Nastar, Phys. Rev. B 75 (2007), 132102.
DOI URL |
[48] |
S. Iwamura, Y. Miura, Acta Mater. 52 (2004) 591-600.
DOI URL |
[49] |
K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62 (2014) 141-155.
DOI URL |
[50] |
Z. Li, L. Fu, J. Peng, H. Zheng, X. Ji, Y. Sun, S. Ma, A. Shan, Mater. Charact. 159 (2020), 109989.
DOI URL |
[51] | M.A. Meyers, K.K. Chawla, Mechanical Metallurgy: Principles and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1984. |
[52] | H.J. Frost, M.F. Ashby, Ashby, Deformation-mechanism Maps: the Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, UK: 1982. |
[53] |
R.W. Hyland, R.C. Stiffler, Scr. Metall. Mater. 25 (1991) 473-477.
DOI URL |
[54] | A.J. Ardell, Metall. Trans. A 16A (1985) 2131-2165. |
[55] | C.L. Fu, Electron. J. Mater. Res. 5 (1990) 971-979. |
[56] |
C.L. Fu, M.H. Yoo, Mater. Chem. Phys. 32 (1992) 25-36.
DOI URL |
[57] |
E.P. George, J.A. Horton, W.D. Porter, J.H. Schneibel, J. Mater. Res. 5 (1990) 1639-1648.
DOI URL |
[58] |
K. Fukunaga, T. Shouji, Y. Miura, Mater. Sci. Eng. A 239-240 (1997) 202-205.
DOI URL |
[59] | P.B. Hirsch, F.J. Humphreys, The Physics and Strength of Plasticity, MIT Press, Cambridge, MA, 1969. |
[60] | A.V.D. Beukel, Phys. Status Solidi A 80 (1975) 197-206. |
[61] |
M.A. Soare, W.A. Curtin, Acta Mater. 56 (2008) 4091-4101.
DOI URL |
[62] |
Y. Brechet, Y. Estrin, Acta Metall. Mater. 43 (1995) 955-963.
DOI URL |
[63] |
Y. Cai, S. Yang, S. Fu, D. Zhang, Q. Zhang, J. Mater. Sci. Technol. 33 (2017) 580-586.
DOI URL |
[64] |
W.H. Wang, D. Wu, S.S.A. Shah, R.S. Chen, C.S. Lou, Mater. Sci. Eng. A 649 (2016) 214-221.
DOI URL |
[65] |
F. Springer, C. Schwink, Scr. Metall. Mater. 32 (1995) 1771-1776.
DOI URL |
[66] |
D.M. Riley, P.G. McCormick, Acta Mater. 25 (1976) 181-185.
DOI URL |
[67] |
J.A. Wert, P.A. Wycliffe, Scr. Metall. 19 (1985) 463-466.
DOI URL |
[68] |
X. Wang, G. Han, C. Cui, S. Guan, T. Jin, X. Sun, Z. Hu, Metall. Mater. Trans. A 47 (2016) 5994-6003.
DOI URL |
[69] |
H.X. Li, J.K. Park, Mater. Sci. Eng. A 280 (2000) 156-160.
DOI URL |
[70] | L. Sun, Q. Zhang, P. Cao, Chin. Phys. B 18 (2009) 3501-3507. |
[71] |
H. Jiang, Q. Zhang, X. Chen, Z. Chen, Z. Jiang, X. Wu, J. Fan, Acta Mater. 55 (2007) 2219-2228.
DOI URL |
[72] | A. Weidner, Plastic Deformation and Strain Localizations, Deformation Processes in TRIP/TWIP Steels, Springer, Cham, 2020, Springer Series in Materials Science. |
[73] |
P. G.McCormick, C.P. Ling, Acta Metall. Mater. 43 (1995) 1969-1977.
DOI URL |
[74] |
Y. Cai, Q. Zhang, S. Yang, S. Fu, Y. Wang, Exp. Mech. 56 (2016) 1243-1255.
DOI URL |
[75] |
J. Kang, D.S. Wilkinson, J.D. Embury, M. Jain, A.J. Beaudoin, Scr. Mater. 53 (2005) 499-503.
DOI URL |
[76] |
M. Li, D.J. Lege, J. Eng. Mater. Technol. 120 (1998) 48-56.
DOI URL |
[1] | P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect [J]. J. Mater. Sci. Technol., 2021, 73(0): 91-100. |
[2] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[3] | Subash Bommu Chinnaraj, Pahala Gedara Jayathilake, Jack Dawson, Yasmine Ammar, Jose Portoles, Nicholas Jakubovics, Jinju Chen. Modelling the combined effect of surface roughness and topography on bacterial attachment [J]. J. Mater. Sci. Technol., 2021, 81(0): 151-161. |
[4] | Yanke Liu, Yulong Cai, Chenggang Tian, Guoliang Zhang, Guoming Han, Shihua Fu, Chuanyong Cui, Qingchuan Zhang. Experimental investigation of a Portevin-Le Chatelier band in Ni‒Co-based superalloys in relation to γʹ precipitates at 500 ℃ [J]. J. Mater. Sci. Technol., 2020, 49(0): 35-41. |
[5] | Qiang Lu, Kai Li, Haonan Chen, Mingjun Yang, Xinyue Lan, Tong Yang, Shuhong Liu, Min Song, Lingfei Cao, Yong Du. Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium [J]. J. Mater. Sci. Technol., 2020, 41(0): 139-148. |
[6] | Xiaoqiang Li, Chunlong Cheng, Qichi Le, Lei Bao, Peipeng Jin, Ping Wang, Liang Ren, Hang Wang, Xiong Zhou, Chenglu Hu. Investigation of Portevin-Le Chatelier effect in rolled α-phase Mg-Li alloy during tensile and compressive deformation [J]. J. Mater. Sci. Technol., 2020, 52(0): 152-161. |
[7] | Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding [J]. J. Mater. Sci. Technol., 2020, 45(0): 162-175. |
[8] | Zhen Ma, Huarui Zhang, Wei Song, Xiaoyan Wu, Lina Jia, Hu Zhang. Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior [J]. J. Mater. Sci. Technol., 2020, 39(0): 14-21. |
[9] | Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening [J]. J. Mater. Sci. Technol., 2020, 46(0): 44-49. |
[10] | P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 18-26. |
[11] | Qiyang Tan, Yingang Liu, Zhiqi Fan, Jingqi Zhang, Yu Yin, Ming-Xing Zhang. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy [J]. J. Mater. Sci. Technol., 2020, 58(0): 34-45. |
[12] | X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions [J]. J. Mater. Sci. Technol., 2019, 35(6): 972-981. |
[13] | Hui Xu, Xuebing Liu, Di Zhang, Xinfang Zhang. Minimizing serrated flow in Al-Mg alloys by electroplasticity [J]. J. Mater. Sci. Technol., 2019, 35(6): 1108-1112. |
[14] | Jing Xue, Shenbao Jin, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Understanding formation of Mg-depletion zones in Al-Mg alloys under high pressure torsion [J]. J. Mater. Sci. Technol., 2019, 35(5): 858-864. |
[15] | Peipei Ma, Chunhui Liu, Ziyao Ma, Lihua Zhan, Minghui Huang. Formation of a new intermediate phase and its evolution toward θ' during aging of pre-deformed Al-Cu alloys [J]. J. Mater. Sci. Technol., 2019, 35(5): 885-890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||