J. Mater. Sci. Technol. ›› 2021, Vol. 86: 139-150.DOI: 10.1016/j.jmst.2021.01.035
• Research Article • Previous Articles Next Articles
Hima Bindu Ruttalaa,b, Thiruganesh Ramasamyc, Raghu Ram Teja Ruttalad, Tuan Hiep Trane,f, Jee-Heon Jeonga, Han-Gon Choig, Sae Kwang Kuh, Chul Soon Yonga,*(
), Jong Oh Kima,*(
)
Received:2020-10-28
Accepted:2021-01-07
Published:2021-09-30
Online:2021-09-24
Contact:
Chul Soon Yong,Jong Oh Kim
About author:*E-mail addresses: csyong@ynu.ac.kr (C.S. Yong),Hima Bindu Ruttala, Thiruganesh Ramasamy, Raghu Ram Teja Ruttala, Tuan Hiep Tran, Jee-Heon Jeong, Han-Gon Choi, Sae Kwang Ku, Chul Soon Yong, Jong Oh Kim. Mitochondria-targeting multi-metallic ZnCuO nanoparticles and IR780 for efficient photodynamic and photothermal cancer treatments[J]. J. Mater. Sci. Technol., 2021, 86: 139-150.
Scheme 1. Schematic illustration of the mitochondria-targeting TPP-conjugated-ZnCuO NP (ZCNP) and IR780-loaded polymer-lipid hybrid NPs (TPP-ZC/IR-PNPs).
Fig. 1. Characterization of TPP-ZC/IR-PNPs. (a) TEM images of (i) ZCNP and (ii) TPP-ZC-IR-PNPs; (b) AFM images of (i) ZCNP and (ii) TPP-ZC-IR-PNPs; (c) Elemental analysis of Zn and Cu in the TPP-ZC-IR-PNPs performed by energy dispersive X-ray spectroscopy; (d) UV/vis absorption spectra of ZCNP, IR780, and TPP-ZC-IR-PNPs; (e) Photostability of TPP-ZC-IR-PNPs under daylight and darkness at 24 h.
Fig. 2. In vitro cellular uptake of TPP-ZC-IR-PNPs. (a) TPP-ZC-IR-PNP time-dependent uptake was analyzed by FACS at different time points (0.25, 0.5, 1, and 3 h); (b, c) Co-localization of TPP-ZC-IR-PNPs into mitochondria was analyzed by CSLM in HT29 and A549 cells after 1 h of incubation and staining with MitoTracker Red.
Fig. 3. The generation of heat and ROS under laser irradiation and the impact on cancer cells. (a) Qualitative and quantitative thermal images of the temperature elevation curves of PBS, ZCNP, IR780, and TPP-ZC-IR-PNPs under exposure to 808 nm and 1 W/cm2 over a period of 5 min; (b) Photothermal ablation of HT-29 and A549 cancer cells stained with Calcein-AM (green) and EthD-1 (red) upon treatment with laser-irradiated TPP-ZC-IR-PNPs, and the white dashed line indicates the location of laser irradiation; (c) Changes of intracellular ROS levels with ZCNP, IR780, and other formulations with and without laser irradiation; (d) Evaluation of the GSH/GSSG ratio after treatment with different formulations in the HT-29 and A549 cells.
Fig. 4. Cancer cell death in the presence of various formulations with or without laser irradiation. (a) Cell viability analysis of HT-29 and A549 cancer cells was performed by an MTT assay following incubation with various formulations and NIR irradiation for 5 min with a 808 nm laser (1 W/cm2) Data are expressed as means ± SD (n = 6); (b) Nuclear staining assay in HT-29 and A549 cells after treatment with PBS, IR780, Zn-doped CuO NP, ZC-IR-PNPs, and TPP-ZC-IR-PNPs with and without laser irradiation using fluorescence microscopy.
Fig. 5. TPP-ZC-IR-PNPs distributed mainly into tumors and generated heat but remained non-toxic to the organs in animal models. (a) In vivo fluorescence imaging of tumor-bearing Balb/c nude mice after intravenous administration of TPP-ZC-IR-PNPs and the ex vivo organ fluorescence of the tumor, liver, spleen, heart, kidney, and lungs. All the imaged tissues were excised at 24 h; (b) In vivo photothermal effect demonstrated temperature elevation upon NIR irradiation for 5 min (808 nm, 1 W/cm2) for PBS and TPP-ZC-IR-PNPs, (i) Thermo-images of the treatments, (ii) Summary graph of the temperature change; (c) No organ toxicity was recorded in the principal organs after treatment with the various formulations (i) Control, (ii) ZCNP, (iii) ZC-IR-PNP, (iv) TPP-ZC-IR-PNP, (v) IR780 (+NIR), (vi) ZCNP (+NIR), (vii) ZC-IR-PNP (+NIR), and (viii) TPP-ZC-IR-PNP (+NIR).
Fig. 6. In vivo antitumor efficacy of TPP-ZC-IR-PNP. TPP-ZC-IR-PNP under laser irradiation induced a significant reduction of tumor volume and reduced the expression of tumor markers on tissues. (a) Changes in tumor volume and (b) the body weight of nude mice bearing HT-29 xenografts after treatment with the different formulations with and without NIR (808 nm, 5 min, and 1 W/cm2). The formulations were administered via tail vein injection at a fixed dose of 5 mg/kg and 2.5 mg/kg (ZCNP and IR 780, respectively) on day 1, 4, 7, and 10. Data are presented as the mean ± SD (n = 6); (c) Histological and immunohistochemical analysis following different treatments: H&E, Caspase-3, PARP, Ki67, and CD31. (i) Control, (ii) ZCNP, (iii) ZC-IR-PNP, (iv) TPP-ZC-IR-PNP, (v) IR780 (+NIR), (vi) ZCNP (+NIR), (vii) ZC-IR-PNP (+NIR), and (viii) TPP-ZC-IR-PNP (+NIR). *p < 0.05 and ***p < 0.01. Scale bars = 120 μm.
| [1] |
M.R. Duchen, Mol. Aspects Med. 25(2004) 365-451.
DOI URL |
| [2] |
H.B. Ruttala, T. Ramasamy, B.K. Poudel, R.R.T. Ruttala, S.G. Jin, H.G. Choi, S.K. Ku, C.S. Yong, J.O. Kim, Acta Biomater. 101(2020) 531-543.
DOI PMID |
| [3] |
S. Fulda, L. Galluzzi, G. Kroemer, Nat. Rev. Drug Discovery 9 (2010) 447.
DOI URL |
| [4] |
L. Galluzzi, E. Morselli, O. Kepp, I. Vitale, A. Rigoni, E. Vacchelli, M. Michaud, H. Zischka, M. Castedo, G. Kroemer, Mol. Aspects Med. 31(2010) 1-20.
DOI PMID |
| [5] |
W.H. Chen, Q. Lei, C.X. Yang, H.Z. Jia, G.F. Luo, X.Y. Wang, G. Liu, S.X. Cheng, X.Z. Zhang, Small 11 (2015) 5230-5242.
DOI URL |
| [6] |
P. AshaRani, G. Low Kah Mun, M.P. Hande, S. Valiyaveettil, ACS Nano 3 (2008) 279-290.
DOI URL |
| [7] |
R. Wahab, M.A. Siddiqui, Q. Saquib, S. Dwivedi, J. Ahmad, J. Musarrat, A.A. Al-Khedhairy, H.-S. Shin, Colloids Surf. B 117 (2014) 267-276.
DOI URL |
| [8] |
M.J. Akhtar, M. Ahamed, S. Kumar, M.M. Khan, J. Ahmad, S.A. Alrokayan, Int. J. Nanomed. 7(2012) 845-857.
DOI PMID |
| [9] |
T. Ramasamy, S. Munusamy, H.B. Ruttala, J.O. Kim, Biotechnol. J. 16(2020), 1900408.
DOI URL |
| [10] |
H.B. Ruttala, T. Ramasamy, T. Madeshwaran, T.T. Hiep, U. Kandasamy, H.G. Choi, C.S. Yong, J.O. Kim, Arch. Pharmacal Res. 41(2018) 111-129.
DOI URL |
| [11] |
S. Ostrovsky, G. Kazimirsky, A. Gedanken, C. Brodie, Nano Res. 2(2009) 882-890.
DOI URL |
| [12] |
H. Zhang, B. Chen, H. Jiang, C. Wang, H. Wang, X. Wang, Biomaterials 32 (2011) 1906-1914.
DOI URL |
| [13] |
P. Maddahi, N. Shahtahmasebi, A. Kompany, M. Mashreghi, S. Safaee, F. Roozban, Mater. Sci.-Pol. 32(2014) 130-135.
DOI URL |
| [14] |
R. Yuan, H. Xu, X. Liu, Y. Tian, C. Li, X. Chen, S. Su, I. Perelshtein, A. Gedanken, X. Lin, ACS Appl. Mater. Interfaces 8 (2016) 31806-31812.
DOI URL |
| [15] |
C. Zhang, S. Wang, J. Xiao, X. Tan, Y. Zhu, Y. Su, T. Cheng, C. Shi, Biomaterials 31 (2010) 1911-1917.
DOI PMID |
| [16] | K.A. Wilk, K. Zieli′nska, J. Pietkiewicz, N. Skołucka, A. Choroma′nska, J. Rossowska, A. Garbiec, J. Saczko, Int. J. Oncol. 41(2012) 105-116. |
| [17] |
C.-L. Peng, Y.-H. Shih, P.-C. Lee, T.M.-H. Hsieh, T.-Y. Luo, M.-J. Shieh, ACS Nano 5 (2011) 5594-5607.
DOI URL |
| [18] |
H. Deng, Y. Zhong, M. Du, Q. Liu, Z. Fan, F. Dai, X. Zhang, Theranostics 4 (2014) 904-918.
DOI URL |
| [19] |
X. Cheng, R. Sun, L. Yin, Z. Chai, H. Shi, M. Gao, Adv. Mater. 29(2017), 1604894.
DOI URL |
| [20] |
H.B. Ruttala, Y.T. Ko, Colloids Surf. B 128 (2015) 419-426.
DOI URL |
| [21] |
T. Ramasamy, X. Chen, B. Qin, D.E. Johnson, J.R. Grandis, F.S. Villanueva, Plos One 15 (2020), e0242264.
DOI URL |
| [22] |
H.B. Ruttala, N. Chitrapriya, K. Kaliraj, T. Ramasamy, W.H. Shin, J.H. Jeong, J.R. Kim, S.K. Ku, H.G. Choi, C.S. Yong, J.O. Kim, Acta Biomater. 63(2017) 135-149.
DOI PMID |
| [23] |
T. Ramasamy, H.B. Ruttala, P. Sundaramoorthy, B.K. Poudel, Y.S. Youn, S.K. Ku, H.G. Choi, C.S. Yong, J.O. Kim, NPG Asia Mater. 10(2018) 197-216.
DOI URL |
| [24] | R.S. Riley, E.S. Day, Wiley Interdiscip, Rev.: Nanomed. Nanobiotechnol. 9(2017) e1449. |
| [25] |
C. Iodice, A. Cervadoro, A. Palange, J. Key, S. Aryal, M.R. Ramirez, C. Mattu, G. Ciardelli, B.E. O’Neill, P. Decuzzi, Optics Lasers Eng. 76(2016) 74-81.
DOI URL |
| [26] |
X. Tan, S. Luo, D. Wang, Y. Su, T. Cheng, C. Shi, Biomaterials 33 (2012) 2230-2239.
DOI PMID |
| [27] |
C. Yue, P. Liu, M. Zheng, P. Zhao, Y. Wang, Y. Ma, L. Cai, Biomaterials 34 (2013) 6853-6861.
DOI URL |
| [28] |
B.K. Poudel, B. Gupta, T. Ramasamy, R.K. Thapa, S. Pathak, K.T. Oh, J.-H. Jeong, H.-G. Choi, C.S. Yong, J.O. Kim, Colloids Surf. B 160 (2017) 73-83.
DOI URL |
| [29] | M. Millard, D. Pathania, Y. Shabaik, L. Taheri, J. Deng, N. Neamati, PloS One 5 (2010), e13131. |
| [30] | C.C. Moura, M.A. Segundo, J.D. Neves, S. Reis, B. Sarmento, Int. J. Nanomed. 9(2014) 4911-4922. |
| [31] |
J.-C. Martinou, S. Desagher, B. Antonsson, Nat. Cell Biol. 2(2000) E41-E43.
DOI URL |
| [32] |
Y. Yamada, H. Harashima, Adv. Drug Delivery Rev. 60(2008) 1439-1462.
DOI URL |
| [33] | B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, Critic. Rev. Oncol. Hematol. 43(2002) 33-56. |
| [34] | X.Hu C. BioMed Res. Int. 2015 (2015), 423287. |
| [35] |
J.P. Piret, D. Jacques, J.N. Audinot, J. Mejia, E. Boilan, F. Noel, M. Fransolet, C. Demazy, S. Lucas, C. Saout, O. Toussaint, Nanoscale 4 (2012) 7168-7184.
DOI URL |
| [36] |
H. Zhang, D. Liu, L. Wang, Z. Liu, R. Wu, A. Janoniene, M. Ma, G. Pan, L. Baranauskiene, L. Zhang, W. Cui, V. Petrikaite, D. Matulis, H. Zhao, J. Pan, H.A. Santos, Adv. Healthcare Mater. 6(2017) 1601406.
DOI URL |
| [1] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
| [2] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
| [3] | Dong Zhao, Xiaoyang Wang, Ling Chang, Wenli Pei, Chun Wu, Fei Wang, Luran Zhang, Jianjun Wang, Qiang Wang. Synthesis of super-fine L10-FePt nanoparticles with high ordering degree by two-step sintering under high magnetic field [J]. J. Mater. Sci. Technol., 2021, 73(0): 178-185. |
| [4] | Wenshen Wang, Fenfen Li, Shibo Li, Yi Hu, Mengran Xu, Yuanyuan Zhang, Muhammad Imran Khan, Shaozhen Wang, Min Wu, Weiping Ding, Bensheng Qiu. M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy [J]. J. Mater. Sci. Technol., 2021, 81(0): 77-87. |
| [5] | Zhuo Chen, Shun Chen, Yufei Xiong, Yuping Yang, Yang Zhang, Lijie Dong. Flexible coatings with microphase separation structure attained by copolymers and ultra-fine nanoparticles for endurable antifouling [J]. J. Mater. Sci. Technol., 2021, 82(0): 179-186. |
| [6] | Yuan-Yun Zhao, Feng Qian, Wenfeng Shen, Chengliang Zhao, Jianguo Wang, Chunxiao Xie, Fengling Zhou, Chuntao Chang, Yanjun Li. Facile synthesis of metal and alloy nanoparticles by ultrasound-assisted dealloying of metallic glasses [J]. J. Mater. Sci. Technol., 2021, 82(0): 144-152. |
| [7] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
| [8] | Jie Liu, Li Li, Run Zhang, Zhi Ping Xu. Development of CaP nanocomposites as photothermal actuators for doxorubicin delivery to enhance breast cancer treatment [J]. J. Mater. Sci. Technol., 2021, 63(0): 73-80. |
| [9] | Jingwei Xu, Xiaju Cheng, Fuxian Chen, Weijie Li, Xiaohui Xiao, Puxiang Lai, Guopeng Xu, Li Xu, Yue Pan. Fabrication of multifunctional polydopamine-coated gold nanobones for PA/CT imaging and enhanced synergistic chemo-photothermal therapy [J]. J. Mater. Sci. Technol., 2021, 63(0): 97-105. |
| [10] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
| [11] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
| [12] | Dayi Pan, Xiuli Zheng, Miao Chen, Qianfeng Zhang, Zhiqian Li, Zhenyu Duan, Qiyong Gong, Zhongwei Gu, Hu Zhang, Kui Luo. Dendron-polymer hybrid mediated anticancer drug delivery for suppression of mammary cancer [J]. J. Mater. Sci. Technol., 2021, 63(0): 115-123. |
| [13] | Jing Li, Zhenqiang Feng, Ning Gu, Fang Yang. Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 124-132. |
| [14] | Huawei Rong, Tong Gao, Yun Zheng, Lingwei Li, Dake Xu, Xuefeng Zhang, Yanglong Hou, Mi Yan. Fe3O4@silica nanoparticles for reliable identification and magnetic separation of Listeria monocytogenes based on molecular-scale physiochemical interactions [J]. J. Mater. Sci. Technol., 2021, 84(0): 116-123. |
| [15] | Xianliang Hou, Shun Yao, Zhen Wang, Changqing Fang, Tiehu Li. Enhancement of the mechanical properties of polylactic acid/basalt fiber composites via in-situ assembling silica nanospheres on the interface [J]. J. Mater. Sci. Technol., 2021, 84(0): 182-190. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
