J. Mater. Sci. Technol. ›› 2021, Vol. 80: 50-65.DOI: 10.1016/j.jmst.2020.10.076
• Research Article • Previous Articles Next Articles
Zhen Lia, Zhang-Zhi Shia,b,*(), Hai-Jun Zhangc,d, Hua-Fang Lia, Yun Fenge,**(
), Lu-Ning Wanga,*(
)
Received:
2020-08-27
Accepted:
2020-10-22
Published:
2020-12-24
Online:
2020-12-24
Contact:
Zhang-Zhi Shi,Yun Feng,Lu-Ning Wang
About author:
**E-mail addresses: fengyun@bjmu.edu.cn(Y. Feng).Zhen Li, Zhang-Zhi Shi, Hai-Jun Zhang, Hua-Fang Li, Yun Feng, Lu-Ning Wang. Hierarchical microstructure and two-stage corrosion behavior of a high-performance near-eutectic Zn-Li alloy[J]. J. Mater. Sci. Technol., 2021, 80: 50-65.
Fig. 1. (a) A sketch of the designed microstructure. (b) The Zn-rich end of Zn-Li phase diagram [50] with the region of eutectic reaction enlarged and crystal structures of Zn and β-LiZn4 [51,52]. (c) Engineering strain-stress curves of three parallel tensile samples of the Zn-Li alloy (WR). (d) Measuring the necking zone of a representative fractured tensile sample.
Status | YS(MPa) | UTS(MPa) | EL(%) | Toughness(104 MJ/m3) |
---|---|---|---|---|
C | 192.8 ± 2.8 | 195.9 ± 5.8 | 0.5 ± 0.1 | 0.08 ± 0.03 |
WR | 245.8 ± 22.6 | 395.2 ± 6.8 | 46.5 ± 5.7 | 1.56 ± 0.11 |
Table 1 Room temperature tensile properties of the alloy. C and WR refer to the as-cast and the as-warm-rolled statues, respectively.
Status | YS(MPa) | UTS(MPa) | EL(%) | Toughness(104 MJ/m3) |
---|---|---|---|---|
C | 192.8 ± 2.8 | 195.9 ± 5.8 | 0.5 ± 0.1 | 0.08 ± 0.03 |
WR | 245.8 ± 22.6 | 395.2 ± 6.8 | 46.5 ± 5.7 | 1.56 ± 0.11 |
Fig. 2. (a) XRD profiles of the alloy. (b) Microstructure of the as-cast alloy. (c) Microstructure of the WR alloy. (d) Primary and secondary Zn phases.
Fig. 3. The WR alloy: (a) a representative T-EBSD measured microstructure colored according to the inverse pole figure (IPF), which is viewed normal to ND, i.e., IPF//ND. In the figure, subgrain and grain boundaries with misorientations larger than 5° and 15° are outlined in yellow and in black, respectively; (b) a map corresponding to (a), in which large, medium-sized, small and boundary grains are masked by yellow, light blue, light red and white, respectively; (c) {0001}, {-12-10}, and {-1100} pole figures of Zn grains.
Size | Small | Medium | Large |
---|---|---|---|
Equivalent diameter (μm) | <1 | 1-5 | >5 |
Area (μm2) | <0.8 | 0.8-19.6 | >19.6 |
Grains (PCT) | 115 (74.7 %) | 36 (23.4 %) | 3 (1.9 %) |
Grains with GOS ≤ 3° (PCT) | 108 (93.9 %) | 22 (61.1 %) | 0 (0%) |
Equiaxed grains (PCT) | 62 (53.9 %) | 20 (55.6 %) | 0 (0%) |
Subgrains (PCT) | 268 (82.2 %) | 58 (17.8 %) | 0 (0%) |
Table 2 Grain size distribution in Fig. 3. Boundary grains have been excluded for statistics of small and medium-sized grains/subgrains in order to avoid distorted statistics. While boundary grains are included in statistics of large grains/subgrains since they are useful to estimate the least area of a large grain/subgrain. Criterion for an equiaxed grain is its aspect ratio (=length/width) ≤ 1.5. PCT and GOS stand for percentage and grain orientation spread, respectively.
Size | Small | Medium | Large |
---|---|---|---|
Equivalent diameter (μm) | <1 | 1-5 | >5 |
Area (μm2) | <0.8 | 0.8-19.6 | >19.6 |
Grains (PCT) | 115 (74.7 %) | 36 (23.4 %) | 3 (1.9 %) |
Grains with GOS ≤ 3° (PCT) | 108 (93.9 %) | 22 (61.1 %) | 0 (0%) |
Equiaxed grains (PCT) | 62 (53.9 %) | 20 (55.6 %) | 0 (0%) |
Subgrains (PCT) | 268 (82.2 %) | 58 (17.8 %) | 0 (0%) |
Fig. 4. TEM/HRTEM characterization of WR alloy: (a) bright field image of Zn grains; (b) intragranular network of fine LiZn4 precipitates; (c) HRTEM image of a β-LiZn 4 precipitate and its surrounding Zn matrix; (d) orientation relationship (OR) between the two phases deduced from fast Fourier transformed (FFT) diffraction patterns. In order to guide pattern indexing, calculated Zn pattern is illustrated with blue dots, while calculated β-LiZn 4 pattern is illustrated with red dots. For convenience, an index of Zn has no subscript, while that of β-LiZn 4 has a subscript of β.
Fig. 5. Corrosion morphologies and products of WR alloy after immersion in SBF until 30 days (a-h). (a1-h1) are areas enclosed by red squares in (a-h) observed at higher magnifications. Points 1-14 are selected for SEM/EDS analysis. (i) Typical morphologies of the corrosion products on the alloy surface. (f) Zn/O ratio of the uniform corrosion product layer. The kp values in Fig. 5(j) are parabolic rate constant calculated according to parabolic rate law, showing the variation rate of Zn/O ratio.
Element composition (at.%) | ||||||
---|---|---|---|---|---|---|
Sample | Point | C | O | P | Ca | Zn |
WR alloy | 1 | 13.73 | 5.93 | - | - | 80.34 |
2 | 23.61 | 15.72 | 60.66 | |||
3 | 34.92 | 6.90 | 1.96 | 0.48 | 55.73 | |
4 | 19.51 | 11.26 | 1.88 | 0.37 | 66.98 | |
5 | 19.90 | 22.47 | 4.58 | 1.94 | 51.11 | |
6 | 25.45 | 5.07 | 2.42 | 0.31 | 66.76 | |
7 | 23.56 | 32.96 | 2.3 | 0.67 | 40.5 | |
8 | 21 | 23.6 | 3.19 | 0.66 | 51.56 | |
9 | 16.66 | 57.62 | 6.61 | 2.43 | 16.68 | |
10 | 37.94 | 10.23 | 51.83 | |||
11 | 25.43 | 19.83 | 3.71 | 1.32 | 49.71 | |
12 | 30.38 | 32.28 | 4.48 | 1.43 | 31.43 | |
13 | 9.03 | 58.68 | 11.42 | 6.65 | 14.23 | |
14 | 11.28 | 36.56 | 7.29 | 3.21 | 41.67 |
Table 3 Elemental composition of the selected points marked in Fig. 5.
Element composition (at.%) | ||||||
---|---|---|---|---|---|---|
Sample | Point | C | O | P | Ca | Zn |
WR alloy | 1 | 13.73 | 5.93 | - | - | 80.34 |
2 | 23.61 | 15.72 | 60.66 | |||
3 | 34.92 | 6.90 | 1.96 | 0.48 | 55.73 | |
4 | 19.51 | 11.26 | 1.88 | 0.37 | 66.98 | |
5 | 19.90 | 22.47 | 4.58 | 1.94 | 51.11 | |
6 | 25.45 | 5.07 | 2.42 | 0.31 | 66.76 | |
7 | 23.56 | 32.96 | 2.3 | 0.67 | 40.5 | |
8 | 21 | 23.6 | 3.19 | 0.66 | 51.56 | |
9 | 16.66 | 57.62 | 6.61 | 2.43 | 16.68 | |
10 | 37.94 | 10.23 | 51.83 | |||
11 | 25.43 | 19.83 | 3.71 | 1.32 | 49.71 | |
12 | 30.38 | 32.28 | 4.48 | 1.43 | 31.43 | |
13 | 9.03 | 58.68 | 11.42 | 6.65 | 14.23 | |
14 | 11.28 | 36.56 | 7.29 | 3.21 | 41.67 |
Fig. 6. SEM observations of the surface cross-section and corresponding linear EDS profiles of the WR alloy exposed to SBF for (a) 5 days, (b) 15 days and (c) 30 days. (d) Thicknesses of corrosion layer of the WR alloy after immersion in SBF.
Fig. 7. SEM observation of alloy surface morphology after the removal of corrosion products (a-h). (a1-h1) are enlarged areas marked by red squares in (a-h), revealing more details.
Fig. 8. Immersion in SBF: (a) alloy weight loss and corrosion rate (CRw); (b) Zn2+ release amount; (c) maximum (Max) depth of corrosion pits and CRp. The kp values in Fig. 8(a) and (b) are parabolic rate constant calculated according to parabolic rate law, showing the variation rate of fitted data.
Fig. 10. XPS spectrum of WR alloy after immersion in SBF for different days: narrow Zn 2p3/2 spectrum for (b) 1 day, (g) 15 days and (j) 30 days and narrow Li 1?s spectrums for (d) 1 day, (e) 5 days and (f) 15 days.
Element | Characterized bonds | Binding energy (eV) | References |
---|---|---|---|
Zn 2p3/2 | Zn | 1020.8 | [ |
Zn(OH)2 | 1021.8 | [ | |
ZnO | 1021.2 | [ | |
Li 1 s | LiCl | 55.8 | [ |
LiOH | 54.9 | [ | |
Li2CO3 | 55.2 | [ |
Table 4 Chemical identification obtained from XPS spectra of Li 1s and Zn 2p 3/2.
Element | Characterized bonds | Binding energy (eV) | References |
---|---|---|---|
Zn 2p3/2 | Zn | 1020.8 | [ |
Zn(OH)2 | 1021.8 | [ | |
ZnO | 1021.2 | [ | |
Li 1 s | LiCl | 55.8 | [ |
LiOH | 54.9 | [ | |
Li2CO3 | 55.2 | [ |
Fig. 11. (a) OCP values and (b) PDP curves of WR alloy immersed for different time; EIS of WR alloy immersed for different time: (c) Nyquist plots, (d) Bode plots of |Z| vs. frequency, (e) Bode plots of phase angle vs. frequency in SBF, (f) The equivalent circuit.
Time | βa (mV/dec) | -βc(mV/dec) | Ecorr (VSCE) | icorr (μA/cm2) | RLPR(kΩ cm2) | CRLPR(mm/year) |
---|---|---|---|---|---|---|
1 day | - | 244.02 ± 40.76 | -1.06 ± 0.01 | 1.76 ± 0.19 | 60.32 ± 6.28 | 25.34 ± 2.27 |
3 days | - | 206.34 ± 35.69 | -1.07 ± 0.04 | 0.99 ± 0.16 | 90.52 ± 4.59 | 14.24 ± 1.16 |
5 days | - | 135.32 ± 34.20 | -1.08 ± 0.02 | 2.77 ± 0.14 | 21.22 ± 0.76 | 35.84 ± 5.66 |
7 days | 66.31 ± 5.32 | 144.67 ± 21.24 | -1.03 ± 0.01 | 4.62 ± 0.10 | 11.64 ± 2.47 | 66.04 ± 8.34 |
10 days | 64.34 ± 1.21 | 168.23 ± 1.01 | -0.98 ± 0.01 | 4.44 ± 0.39 | 10.16 ± 2.28 | 63.84 ± 9.55 |
15 days | 63.02 ± 6.87 | 207.34 ± 35.15 | -1.01 ± 0.01 | 8.13 ± 0.37 | 4.88 ± 1.03 | 115.18 ± 11.71 |
20 days | 30.65 ± 6.04 | 74.70 ± 21.53 | -0.94 ± 0.01 | 6.29 ± 0.72 | 3.64 ± 0.87 | 90.88 ± 16.19 |
30 days | 40.33 ± 8.67 | 200.65 ± 15.11 | -0.92 ± 0.01 | 10.04 ± 1.12 | 2.21 ± 0.80 | 142.92 ± 10.10 |
Table 5 Electrochemical parameters of WR alloy in SBF.
Time | βa (mV/dec) | -βc(mV/dec) | Ecorr (VSCE) | icorr (μA/cm2) | RLPR(kΩ cm2) | CRLPR(mm/year) |
---|---|---|---|---|---|---|
1 day | - | 244.02 ± 40.76 | -1.06 ± 0.01 | 1.76 ± 0.19 | 60.32 ± 6.28 | 25.34 ± 2.27 |
3 days | - | 206.34 ± 35.69 | -1.07 ± 0.04 | 0.99 ± 0.16 | 90.52 ± 4.59 | 14.24 ± 1.16 |
5 days | - | 135.32 ± 34.20 | -1.08 ± 0.02 | 2.77 ± 0.14 | 21.22 ± 0.76 | 35.84 ± 5.66 |
7 days | 66.31 ± 5.32 | 144.67 ± 21.24 | -1.03 ± 0.01 | 4.62 ± 0.10 | 11.64 ± 2.47 | 66.04 ± 8.34 |
10 days | 64.34 ± 1.21 | 168.23 ± 1.01 | -0.98 ± 0.01 | 4.44 ± 0.39 | 10.16 ± 2.28 | 63.84 ± 9.55 |
15 days | 63.02 ± 6.87 | 207.34 ± 35.15 | -1.01 ± 0.01 | 8.13 ± 0.37 | 4.88 ± 1.03 | 115.18 ± 11.71 |
20 days | 30.65 ± 6.04 | 74.70 ± 21.53 | -0.94 ± 0.01 | 6.29 ± 0.72 | 3.64 ± 0.87 | 90.88 ± 16.19 |
30 days | 40.33 ± 8.67 | 200.65 ± 15.11 | -0.92 ± 0.01 | 10.04 ± 1.12 | 2.21 ± 0.80 | 142.92 ± 10.10 |
Time | Rs(Ω cm2) | CPEdl(10-5 Ω -1 cm-2 sn1) | n | Rdl(kΩ cm2) | CPE1(10-7Ω-1 cm-2 sn2) | n | R1(kΩ cm2) | W (10-5 Ω -1 cm-2 s0.5) | G (10-5 Ω -1 cm-2 s0.5) | x2 (10-3) |
---|---|---|---|---|---|---|---|---|---|---|
1 day | 7.5 ± 1.2 | 0.95 ± 0.20 | 0.83 ± 0.08 | 11.02 ± 0.65 | 11.37 ± 1.02 | 0.89 ± 0.02 | 5.16 ± 0.13 | 16.01 ± 2.84 | 7.70 ± 1.10 | |
3 days | 8.1 ± 1.3 | 0.74 ± 0.11 | 0.90 ± 0.05 | 21.42 ± 0.45 | 3.21 ± 0.20 | 0.84 ± 0.08 | 12.31 ± 0.77 | 8.72 ± 1.80 | 3.21 ± 0.53 | |
5 days | 6.1 ± 1.9 | 0.89 ± 0.07 | 0.92 ± 0.08 | 86.30 ± 0.87 | 0.10 ± 0.02 | 0.87 ± 0.05 | 17.44 ± 0.66 | 0.62 ± 0.11 | 4.62 ± 0.94 | |
7 days | 15.3 ± 2.2 | 8.01 ± 0.24 | 0.94 ± 0.04 | 3.92 ± 0.07 | 2.31 ± 1.44 | 0.89 ± 0.02 | 3.89 ± 0.43 | 47.04 ± 6.72 | 8.50 ± 1.42 | |
10 days | 14.1 ± 0.5 | 35.04 ± 3.70 | 0.69 ± 0.05 | 2.87 ± 0.04 | 2.94 ± 0.13 | 0.83 ± 0.07 | 3.29 ± 0.34 | 32.31 ± 1.74 | 0.85 ± 0.11 | |
15 days | 14.5 ± 1.2 | 22.24 ± 1.84 | 0.58 ± 0.02 | 1.58 ± 0.13 | 13.44 ± 0.51 | 0.73 ± 0.12 | 2.00 ± 0.09 | 17.12 ± 0.84 | 7.21 ± 1.62 | |
20 days | 20.6 ± 5.1 | 27.38 ± 3.22 | 0.53 ± 0.02 | 0.14 ± 0.09 | 95.47 ± 17.37 | 0.66 ± 0.08 | 1.29 ± 0.11 | 26.02 ± 1.53 | 7.83 ± 1.41 | |
30 days | 12.2 ± 0.6 | 88.17 ± 5.17 | 0.60 ± 0.04 | 0.69 ± 0.10 | 320 ± 30.22 | 0.54 ± 0.10 | 2.25 ± 0.06 | 75.01 ± 3.42 | 4.40 ± 1.33 |
Table 6 Fitting parameters of WR alloy in SBF.
Time | Rs(Ω cm2) | CPEdl(10-5 Ω -1 cm-2 sn1) | n | Rdl(kΩ cm2) | CPE1(10-7Ω-1 cm-2 sn2) | n | R1(kΩ cm2) | W (10-5 Ω -1 cm-2 s0.5) | G (10-5 Ω -1 cm-2 s0.5) | x2 (10-3) |
---|---|---|---|---|---|---|---|---|---|---|
1 day | 7.5 ± 1.2 | 0.95 ± 0.20 | 0.83 ± 0.08 | 11.02 ± 0.65 | 11.37 ± 1.02 | 0.89 ± 0.02 | 5.16 ± 0.13 | 16.01 ± 2.84 | 7.70 ± 1.10 | |
3 days | 8.1 ± 1.3 | 0.74 ± 0.11 | 0.90 ± 0.05 | 21.42 ± 0.45 | 3.21 ± 0.20 | 0.84 ± 0.08 | 12.31 ± 0.77 | 8.72 ± 1.80 | 3.21 ± 0.53 | |
5 days | 6.1 ± 1.9 | 0.89 ± 0.07 | 0.92 ± 0.08 | 86.30 ± 0.87 | 0.10 ± 0.02 | 0.87 ± 0.05 | 17.44 ± 0.66 | 0.62 ± 0.11 | 4.62 ± 0.94 | |
7 days | 15.3 ± 2.2 | 8.01 ± 0.24 | 0.94 ± 0.04 | 3.92 ± 0.07 | 2.31 ± 1.44 | 0.89 ± 0.02 | 3.89 ± 0.43 | 47.04 ± 6.72 | 8.50 ± 1.42 | |
10 days | 14.1 ± 0.5 | 35.04 ± 3.70 | 0.69 ± 0.05 | 2.87 ± 0.04 | 2.94 ± 0.13 | 0.83 ± 0.07 | 3.29 ± 0.34 | 32.31 ± 1.74 | 0.85 ± 0.11 | |
15 days | 14.5 ± 1.2 | 22.24 ± 1.84 | 0.58 ± 0.02 | 1.58 ± 0.13 | 13.44 ± 0.51 | 0.73 ± 0.12 | 2.00 ± 0.09 | 17.12 ± 0.84 | 7.21 ± 1.62 | |
20 days | 20.6 ± 5.1 | 27.38 ± 3.22 | 0.53 ± 0.02 | 0.14 ± 0.09 | 95.47 ± 17.37 | 0.66 ± 0.08 | 1.29 ± 0.11 | 26.02 ± 1.53 | 7.83 ± 1.41 | |
30 days | 12.2 ± 0.6 | 88.17 ± 5.17 | 0.60 ± 0.04 | 0.69 ± 0.10 | 320 ± 30.22 | 0.54 ± 0.10 | 2.25 ± 0.06 | 75.01 ± 3.42 | 4.40 ± 1.33 |
Fig. 12. Values of toughness and immersion corrosion rate of biodegradable Zn and Zn alloys. Data are calculated from the literatures [[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],34,46,47,[63], [64], [65], [66], [67], [68], [69], [70], [71]] as well as in this work, which reported tensile strain-stress curves of Zn alloys and their immersion corrosion rates in SBF or Hank’s solution for around 30 days in the meantime.
[1] | J.H. Lee, E.D. Kim, E.J. Jun, H.S. Yoo, J.W. Lee, Biomater. Res. 22 (2018), 8-1-10. |
[2] |
H. Kitabata, R. Waksman, B. Warnack, Cardiovasc. Revasc. Med. 15 (2014) 109-116.
DOI URL |
[3] |
E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, M. Vedani, Acta Biomater. 71 (2018) 1-23.
DOI PMID |
[4] |
P.K. Bowen, J. Drelich, J. Goldman, Adv. Mater. 25 (2013) 2577-2582.
DOI URL |
[5] |
J. Venezuela, M.S. Dargusch, Acta Biomater. 87 (2019) 1-40.
DOI PMID |
[6] |
Z.Z. Shi, J. Yu, X.F. Liu, Mater. Des. 144 (2018) 343-352.
DOI URL |
[7] |
P. Li, C. Schille, E. Schweizer, F. Rupp, A. Heiss, C. Legner, U.E. Klotz, J. Geisgerstorfer, L. Scheideler, Int. J. Mol. Sci. 19 (2018) 755.
DOI URL |
[8] |
M. Sikora-Jasinska, E. Mostaed, A. Mostaed, R. Beanland, D. Mantovani, M. Vedani, Mater. Sci. Eng. C 77 (2017) 1170-1181.
DOI URL |
[9] |
S. Zhao, C.T. Mcnamara, P.K. Bowen, N. Verhun, J.P. Braykovich, J. Goldman, J.W. Drelich, Metall. Mater. Trans. A 48 (2017) 1204-1215.
DOI URL |
[10] |
S. Zhao, J.M. Seitz, R. Eifler, H.J. Maier, R.J. Guillory, E.J. Earley, A. Drelich, J. Goldman, J.W. Drelich, Mater. Sci. Eng. C 76 (2017) 301-312.
DOI URL |
[11] |
Y. Dai, Y. Zhang, H. Liu, H. Fang, D. Li, X. Xu, Y. Yan, L. Chen, Y. Lu, K. Yu, Mater. Lett. 235 (2019) 220-223.
DOI URL |
[12] |
H.L. Jin, S. Zhao, R. Guillory, P.K. Bowen, Z.Y. Yin, A. Griebel, J. Schaffer, E.J. Earley, J. Goldman, J.W. Drelich, Mater. Sci. Eng. C 84 (2018) 67-79.
DOI URL |
[13] | E. Mostaed, M. Sikorajasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland, M. Vedani, J. Mech. Behav, Biomed. Mater. 60 (2016) 581-602. |
[14] |
C. Shen, X. Liu, B. Fan, P. Lan, F. Zhou, X. Li, H. Wang, X. Xiao, L. Li, S. Zhao, RSC Adv. 6 (2016) 86410-86419.
DOI URL |
[15] |
H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, Sci. Rep. 5 (2015), 10719-1-13.
DOI PMID |
[16] |
X. Tong, D. Zhang, X. Zhang, Y. Su, Z. Shi, K. Wang, J. Lin, Y. Li, J. Lin, C. Wen, Acta Biomater. 82 (2018) 197-204.
DOI URL |
[17] |
Y. Zhang, Y. Yan, X. Xu, Y. Lu, L. Chen, D. Li, Y. Dai, Y. Kang, K. Yu, Mater. Sci. Eng. C 99 (2019) 1021-1034.
DOI URL |
[18] | Z. Li, Z.Z. Shi, Y. Hao, H.F. Li, X.F. Liu, A.A. Volinsky, H.J. Zhang, L.N. Wang, J. Mater. Sci, Technol. 35 (2019) 2618-2624. |
[19] | Z. Li, Z.Z. Shi, Y. Hao, H.F. Li, H.J. Zhang, X.F. Liu, L.N. Wang, Mater. Sci. Eng. C 114 (2020), 111049. |
[20] |
D. Choudhuri, S. Meher, S. Nag, N. Dendge, J.Y. Hwang, R. Banerjee, Philos. Mag. Lett. 93 (2013) 395-404.
DOI URL |
[21] |
J.F. Nie, B.C. Muddle, Acta Mater. 48 (2000) 1691-1703.
DOI URL |
[22] |
M.X. Zhang, P.M. Kelly, Acta Mater. 53 (2005) 1073-1084.
DOI URL |
[23] | J. Yang, J.L. Wang, Y.M. Wu, L.M. Wang, H.J. Zhang, Mater. Sci. Eng.A 460-461 (2007) 296-300. |
[24] |
W.Z. Zhang, Z.P. Sun, J.Y. Zhang, Z.Z. Shi, H. Shi, J. Mater. Sci. 52 (2017) 4253-4264.
DOI URL |
[25] |
X.P. Yang, W.Z. Zhang, Sci. China Technol. Sci. 55 (2012) 1343-1352.
DOI URL |
[26] |
Q. Liang, W.T. Reynolds, Metall. Mater. Trans. A 29 (1998) 2059-2072.
DOI URL |
[27] |
W.Z. Zhang, G.C. Weatherly, Prog. Mater. Sci. 50 (2005) 181-292.
DOI URL |
[28] |
Z.Z. Shi, W.Z. Zhang, X.F. Gu, Philos. Mag. 92 (2012) 1071-1082.
DOI URL |
[29] | P.S. Guo, F.X. Li, L.J. Yang, R. Bagheri, Q.K. Zhang, B.Q. Li, K.L. Cho, Z.L. Song, W.S. Sun, H.N. Liu, Mater. Sci. Eng. A748 (2019) 262-266. |
[30] |
R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 45 (2010) 4827-4836.
DOI URL |
[31] |
H. Zhang, H.Y. Wang, J.G. Wang, J. Rong, M. Zha, C. Wang, P.K. Ma, Q.C. Jiang, J. Alloys. Compd. 780 (2019) 312-317.
DOI URL |
[32] |
M. Zha, H.M. Zhang, Z.Y. Yu, X.H. Zhang, X.T. Meng, H.Y. Wang, Q.C. Jiang, J. Mater. Sci. Technol. 34 (2018) 257-264.
DOI URL |
[33] |
J. Venezuela, M.S. Dargusch, Acta Biomater. 87 (2019) 1-40.
DOI PMID |
[34] |
H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, D. Zhu, K. Dai, Y. Zheng, Nat. Commun. 11 (2020) 401.
DOI URL |
[35] |
S. Zhao, C.T. McNamara, P.K. Bowen, N. Verhun, J.P. Braykovich, J. Goldman, J.W. Drelich, Metall. Mater. Trans. A 48 (2017) 1204-1215.
DOI URL |
[36] |
Z.Z. Shi, J. Yu, X.F. Liu, L.N. Wang, J. Mater. Sci. Technol. 34 (2018) 1008-1015.
DOI URL |
[37] |
L. Liu, Y. Meng, A.A. Volinsky, H.J. Zhang, L.N. Wang, Corros. Sci. 153 (2019) 341-356.
DOI URL |
[38] |
E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland, M. Vedani, J. Mech. Behav. Biomed. 60 (2016) 581-602.
DOI URL |
[39] |
J. Kubasek, D. Vojtech, E. Jablonska, I. Pospisilova, J. Lipov, T. Ruml, Mater. Sci. Eng. C 58 (2016) 24-35.
DOI URL |
[40] |
H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, L. Qin, Sci. Rep. 5 (2015), 10719-1-14.
DOI PMID |
[41] |
C. Shen, X. Liu, B. Fan, P. Lan, F. Zhou, X. Li, H. Wang, X. Xiao, L. Li, S. Zhao, Z. Guo, Z. Pu, Y. Zheng, RSC Adv. 6 (2016) 86410-86419.
DOI URL |
[42] |
L. Wang, Y. He, H. Zhao, H. Xie, S. Li, Y. Ren, G. Qin, J. Alloys. Compd 740 (2018) 949-957.
DOI URL |
[43] |
X. Liu, J. Sun, Y. Yang, F. Zhou, Z. Pu, L. Li, Y. Zheng, Mater. Lett. 162 (2016) 242-245.
DOI URL |
[44] |
H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, X. Wang, Mater. Des. 83 (2015) 95-102.
DOI URL |
[45] |
X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li, Y. Zheng, Mater. Des. 94 (2016) 95-104.
DOI URL |
[46] |
R. Yue, H. Huang, G. Ke, H. Zhang, J. Pei, G. Xue, G. Yuan, Mater. Charact. 134 (2017) 114-122.
DOI URL |
[47] |
Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, G. Yuan, Mater. Des. 117 (2017) 84-94.
DOI URL |
[48] | P.K. Bowen, J.M. Seitz, R.J.Guillory 2nd, J.P. Braykovich, S. Zhao, J. Goldman, J.W. Drelich, J. Biomed. Mater. Res. 10 (2018) 245-258. |
[49] |
H.T. Chen, Z.Z. Shi, X.F. Liu, Mater. Sci. Eng. A 770 (2020), 138543.
DOI URL |
[50] |
A.D. Pelton, J. Phase Equilib 12 (1991) 42-45.
DOI URL |
[51] |
M.P. Bichat, J.L. Pascal, F. Gillot, F. Favier, Chem. Mater. 17 (2005) 6761-6771.
DOI URL |
[52] |
Z.Z. Shi, J. Yu, Z.K. Ji, X.F. Liu, X.F. Gu, G. Han, J. Mater. Sci 54 (2018) 1728-1740.
DOI URL |
[53] |
Z.Z. Shi, Y.D. Zhang, F. Wagner, T. Richeton, P.A. Juan, J.S. Lecomte, L. Capolungo, S. Berbenni, Acta Mater. 96 (2015) 333-343.
DOI URL |
[54] | S.W. Cheong, H. Weiland, Mater. Sci.Forum 558-559 (2007) 153-158. |
[55] |
Z.Z. Shi, Z.L. Li, W.S. Bai, A. Tuoliken, J. Yu, X.F. Liu, Mater. Des. 162 (2019) 235-245.
DOI URL |
[56] |
Z. Gui, Z. Kang, Y. Li, J. Alloys. Compd 685 (2016) 222-230.
DOI URL |
[57] |
D. Chadwick, T. Hashemi, Corros. Sci. 18 (1978) 39-51.
DOI URL |
[58] |
P.M.G. Deroubaix, Surf. Interface Anal. 18 (1992) 39-46.
DOI URL |
[59] |
B.R. Strohmeier, D.M. Hercules, J. Catal 86 (1984) 266-279.
DOI URL |
[60] | J.P. Contour, A. Salesse, M. Froment, M. Garreau, J. Thevenin, D. Warin, J. Microsc. Spectrosc. Electron. 4 (1979) 483-491. |
[61] |
L. Hou, M. Raveggi, X.B. Chen, W. Xu, K.J. Laws, Y. Wei, M. Ferry, N. Birbilis, J. Electrochem. Soc. 163 (2016) C324-C329.
DOI URL |
[62] |
Y. Song, E.H. Han, D. Shan, C.D. Yim, B.S. You, Corros. Sci. 65 (2012) 322-330.
DOI URL |
[63] | M.S. Ardakani, E. Mostaed, M. Sikora-Jasinska, S.L. Kampe, J.W. Drelich, Mater. Sci. Eng. A 770 (2020), 138529. |
[64] |
M.S. Dambatta, S. Izman, D. Kurniawan, H. Hermawan, J. King Saud Univ. Sci. 29 (2017) 455-461.
DOI URL |
[65] |
Z. Tang, J. Niu, H. Huang, H. Zhang, J. Pei, J. Ou, G. Yuan, J. Mech. Behav. Biomed. Mater. 72 (2017) 182-191.
DOI URL |
[66] |
H.R. Bakhsheshi Rad, E. Hamzah, H.T. Low, M. Kasiri Asgarani, S. Farahany, E. Akbari, M.H. Cho, Mater. Sci. Eng. C 73 (2017) 215-219.
DOI URL |
[67] | C. Xiao, L. Wang, Y. Ren, S. Sun, E. Zhang, C. Yan, Q. Liu, X. Sun, F. Shou, J. Duan, H. Wang, G. Qin, . Mater. Sci. Technol. 34 (2018) 1618-1627. |
[68] |
M. W˛atroba, W. Bednarczyk, J. Kawałko, K. Mech, M. Marciszko, G. Boelter, M. Banzhaf, P. Bała, Mater. Des. 183 (2019), 108154.
DOI URL |
[69] |
J. Lin, X. Tong, Z. Shi, D. Zhang, L. Zhang, K. Wang, A. Wei, L. Jin, J. Lin, Y. Li, C. Wen, Acta Biomater. 106 (2020) 410-427.
DOI URL |
[70] |
L. Zhang, X.Y. Liu, H. Huang, W. Zhan, Mater. Lett. 244 (2019)119-122.
DOI |
[71] |
R. Yue, J. Zhang, G. Ke, G. Jia, H. Huang, J. Pei, B. Kang, H. Zeng, G. Yuan, Mater. Sci. Eng. C 105 (2019), 110106.
DOI URL |
[72] |
F. Zhang, J. Wang, T. Liu, C. Shang, Mater. Des. 186 (2020), 108330.
DOI URL |
[73] |
Z. Lei, P. Gao, H. Li, Y. Cai, M. Zhan, Mater. Sci. Eng. A 753 (2019) 238-246.
DOI URL |
[74] |
P.F. Gao, Z.N. Lei, X.X. Wang, M. Zhan, Mater. Sci. Eng. A 739 (2019) 198-202.
DOI URL |
[75] | Y. Song, D. Shan, R. Chen, E.H. Han, J. Alloys.Compd. 484 (2009) 585-590. |
[76] |
W. Wang, F. Mohammadi, A. Alfantazi, Corros. Sci. 57 (2012) 11-21.
DOI URL |
[77] |
R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, E.H. Han, Corros. Sci. 79 (2014) 69-82.
DOI URL |
[78] | L. Liu, Y. Meng, C.F. Dong, Y. Yan, A.A. Volinsky, L.N. Wang, J. Mater. Sci. Technol. 34 (2018) 2271-2282. |
[79] | S.S. Zumdahl, Houghton Mifflin Company, 2009, pp. 23. |
[1] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[2] | Zibing An, Shengcheng Mao, Yinong Liu, Li Wang, Hao Zhou, Bin Gan, Ze Zhang, Xiaodong Han. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79(0): 109-117. |
[3] | Xiaozhao Ma, Zhilei Xiang, Chao Tan, Zhitian Wang, Yingying Liu, Ziyong Chen, Qun Shu. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 1-18. |
[4] | Ahmad Ostovari Moghaddam, Nataliya A. Shaburova, Marina N. Samodurova, Amin Abdollahzadeh, Evgeny A. Trofimov. Additive manufacturing of high entropy alloys: A practical review [J]. J. Mater. Sci. Technol., 2021, 77(0): 131-162. |
[5] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[6] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[7] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[8] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[9] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[10] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[11] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[12] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[13] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[14] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[15] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||