J. Mater. Sci. Technol. ›› 2021, Vol. 80: 217-233.DOI: 10.1016/j.jmst.2020.11.044
• Research Article • Previous Articles Next Articles
Yu Fua,b, Jun Lia,b, Hong Luoa,b,c,d,e,*(), Cuiwei Dua,b,c,d,*(
), Xiaogang Lia,b,c,d
Received:
2020-08-30
Accepted:
2020-11-13
Published:
2020-12-10
Online:
2020-12-10
Contact:
Hong Luo,Cuiwei Du
About author:
dcw@ustb.edu.cn (C. Du).Yu Fu, Jun Li, Hong Luo, Cuiwei Du, Xiaogang Li. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J]. J. Mater. Sci. Technol., 2021, 80: 217-233.
Fig. 3. Elemental distribution of (a) Al0.3CoCrFeNi, (b) Al0.5CoCrFeNi and (c) Al0.7CoCrFeNi by energy-dispersive X-ray spectroscopy (EDS) mappings [17].
Fig. 4. Potentiodynamic polarization curves of (a) AlxCoCrFeNi (x = 0, 0.25, 0.5, 1) in 0.5 M H2SO4 solution [54] and (b) AlxCoCrFeNi (x = 0.3, 0.5, 0.7) in 3.5 wt.% NaCl solution [17].
Fig. 5. (a) Nyquist plots, (b) Bode plots and (c) equivalent circuits for FeCoNiCrx (x = 0, 0.5, 1.0) in 3.5 wt.% NaCl solution (in the equivalent circuits, Rs represents the solution resistance, Zf represents the Faraday impedance of electrode, Qdl is the double-layer capacitance, Rt is the charge-transfer resistance, Ca and Ra are the capacitance and impedance of the passive film, respectively and Zw represents the Warburg impedance) [60].
Fig. 6. XPS spectra of (a) Cr 2p3/2, (b) Fe 2p3/2, (c) Ni 2p3/2, (d) Co 2p3/2, (e) O 1s and (f) Mo 3d in the passive films of FeCoCrNi and FeCoCrNiMo0.1 alloys [31].
Fig. 7. (a) Bright-field TEM image, (b) TEM image of the precipitates in the dendrites, (c) SAED pattern of the interdendritic regions, (d) SAED pattern of the dendrite matrix with precipitates, (e-h) the elemental distribution of precipitates in Al1.2CoCrFeNiTi0.8 alloy by TEM-EDS mapping: (e) Al, Ni; (f) Al, Cr, Fe, Ni; (g) Cr, Fe and (h) Ti, Fe, Co [36].
Fig. 8. Corrosion behavior of Cu-containing Fe38.5Mn20Co20Cr15Si5Cu1.5 alloy in 3.5 wt.% NaCl solution: (a) the potentiodynamic polarization curves of as-cast and friction stir processed Cu-HEA, (b) the secondary electron image of Cu-Mn-rich phase in as-cast alloy, (b1) Cu, (b2) Mn, (c) the secondary electron image of pitting morphology of as-cast alloy (near the Cu-Mn-rich phase), (d-e) the secondary electron image of pitting morphology of friction stir processed alloy, (e1, e2) the elemental distribution of the corrosion products by EDS X-ray mapping, (f) the composition of Cu-Mn-rich phase in as-cast alloy and the corrosion products for both conditions and (g) the schematic diagram of Cu-rich region in chloride-containing solution [78].
Fig. 9. Schematic diagram of the pitting corrosion processes of CoCrFeMnNi HEA with 0.8 at.% C in saturated Ca(OH)2 solution containing 3.5 wt.% NaCl: (a) the pitting corrosion processes and (b) the corrosion morphology after polarization test [22].
Fig. 10. Potential maps and line profiles of the as-forged and as-equilibrated AlxCoCrFeNi (x = 0.3, 0.5, 0.7) (A1, A2 and B2 represent disordered-FCC phase, disordered-BCC phase and ordered-BCC phase, respectively): (a) as-forged Al0.3CoCrFeNi; (b) as-equilibrated Al0.3CoCrFeNi; (c) the inter-phase of as-forged Al 0.5CoCrFeNi; (d) the disordered/ordered BCC phase of as-forged Al0.5CoCrFeNi; (e) as-equilibrated Al0.5CoCrFeNi; (f) as-forged Al0.7CoCrFeNi; (g) the inter-phase of as-forged Al0.7CoCrFeNi and (h) the disordered/ordered BCC phase of as-forged Al0.7CoCrFeNi [30].
Alloys | Rs(Ω cm2) | Ydl(sn Ω -1 cm-2) | ndl | Rt(Ω cm2) | Ra(Ω cm2) | Ca(F cm-2) | Zw(Ω cm2) |
---|---|---|---|---|---|---|---|
FeCoNi | 1.3 | 7.8 × 10 -5 | 0.80 | 4.50 × 10 3 | 4.93 × 10 2 | 7.2 × 10 -3 | - |
FeCoNiCr0.5 | 1.5 | 4.7 × 10 -5 | 0.92 | 1.98 × 10 4 | 1.03 × 10 4 | 9.1 × 10 -4 | - |
FeCoNiCr | 1.5 | 5.4 × 10 -5 | 0.91 | 9.08 × 10 2 | - | 4.4 × 10 -4 | 1.03 × 10 -3 |
Table 1 Parameters of FeCoNiCrx (x = 0, 0.5, 1) alloys simulated by electrochemical impedance spectroscopy measurements in 3.5 wt.% NaCl solution [60].
Alloys | Rs(Ω cm2) | Ydl(sn Ω -1 cm-2) | ndl | Rt(Ω cm2) | Ra(Ω cm2) | Ca(F cm-2) | Zw(Ω cm2) |
---|---|---|---|---|---|---|---|
FeCoNi | 1.3 | 7.8 × 10 -5 | 0.80 | 4.50 × 10 3 | 4.93 × 10 2 | 7.2 × 10 -3 | - |
FeCoNiCr0.5 | 1.5 | 4.7 × 10 -5 | 0.92 | 1.98 × 10 4 | 1.03 × 10 4 | 9.1 × 10 -4 | - |
FeCoNiCr | 1.5 | 5.4 × 10 -5 | 0.91 | 9.08 × 10 2 | - | 4.4 × 10 -4 | 1.03 × 10 -3 |
Fig. 12. Comparison of the corrosion potential (Ecorr) and corrosion current density (icorr) between HEAs and other traditional corrosion-resistant alloys in 0.5 M H2SO4 solution.
Fig. 13. Comparison of the breakdown potential (Epit) and the passive current density (ipass) between HEAs and other traditional corrosion-resistant alloys in 3.5 wt.% NaCl solution.
Fig. 14. Pseudo-binary phase diagram of Ni59-xCrxFe20Ru13Mo6W2 calculated in ThermoCalc with TCHEA2 database. The FCC single phase region is shaded in green. The dashed line corresponds the Ni-rich HEA composition with 21 at.% Cr. BCC and BCC# are two disordered BCC phases with a miscibility gap [128].
[1] | B. Murty, J. Yeh, S. Ranganathan, Elsevier, 2014. |
[2] | B. Cantor, I. Chang, P. Knight, A. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218. |
[3] |
J. Yeh, S. Chen, S. Lin, J. Gan, T. Chin, T. Shun, C. Tsau, S. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[4] | J. Yeh, S. Chen, J. Gan, S. Lin, T. Chin, T. Shun, C. Tsau, S. Chang, Metall. Mater. Trans. A 35 (2004) 2535-2536. |
[5] |
J. Yeh, S. Chang, Y. Hong, S. Chen, S. Lin, Mater. Chem. Phys. 103 (2007) 41-46.
DOI URL |
[6] | S. Ranganathan, Curr. Sci. 85 (2003) 1404-1406. |
[7] |
K. Tsai, M. Tsai, J. Yeh, Acta Mater. 61 (2013) 4887-4897.
DOI URL |
[8] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E. Chang, E. Georde, R. Ritchie, Science 345 (2004) 1153-1158.
DOI URL |
[9] |
T. Yang, Y. Zhao, Y. Tong, Z. Jiao, J. Wei, J. Cai, X. Han, D. Chen, A. Hu, J. Kai, K. Lu, Y. Liu, C. Liu, Science 362 (2018) 933-937.
DOI |
[10] |
N. Guo, L. Wang, L. Luo, X. Li, R. Chen, Y. Su, J. Guo, H. Fu, J. Alloys Compd. 660 (2016) 197-203.
DOI URL |
[11] |
Z. Li, K. Pradeep, Y. Deng, D. Raabe, C. Tasan, Nature 534 (2016) 227-231.
DOI URL |
[12] |
Z. Zhang, M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S. Mao, E. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143.
DOI URL |
[13] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
[14] |
N. Kiran Kumar, C. Li, K. Leonard, H. Bei, S. Zinkle, Acta Mater. 113 (2016) 230-244.
DOI URL |
[15] |
T. Nagase, P. Rack, J. Noh, T. Egami, Intermetallics 59 (2015) 32-42.
DOI URL |
[16] | Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, J. Mater, Sci. Technol. 35 (2019) 369-373. |
[17] |
Y. Shi, B. Yang, X. Xie, J. Brechtl, K. Dahmen, P. Liaw, Corros. Sci. 119 (2017) 33-45.
DOI URL |
[18] | B. Ren, Z. Liu, D. Li, L. Shi, B. Cai, M. Wang, Mater. Corros. 63 (2012) 828-834. |
[19] |
D. Wang, X. Lu, Y. Deng, D. Wan, Z. Li, A. Barnoush, Intermetallics 114 (2019), 106605.
DOI URL |
[20] |
H. Luo, Z. Li, W. Lu, D. Ponge, D. Raabe, Corros. Sci. 136 (2018) 403-408.
DOI URL |
[21] |
H. Luo, W.J. Lu, X.F. Fang, D. Ponge, Z.M. Li, D. Raabe, Mater. Today 21 (2018) 1003-1009.
DOI URL |
[22] |
H. Luo, S. Zou, Y. Chen, Z. Li, C. Du, X. Li, Corros. Sci. 163 (2020), 108287.
DOI URL |
[23] | X. Shang, Z. Wang, F. He, J. Wang, J. Li, J. Yu, Sci. China Technol. 61 (2018) 189-196. |
[24] |
W. Wang, W. Wang, S. Wang, Y. Tsai, C. Lai, J. Yeh, Intermetallics 26 (2012) 44-51.
DOI URL |
[25] |
Q. Zhou, S. Sheikh, P. Ou, D. Chen, Q. Hu, S. Guo, Electrochem. Commun. 98 (2019) 63-68.
DOI URL |
[26] |
Y. Zhao, J. Qiao, S. Ma, M. Gao, H. Yang, M. Chen, Y. Zhang, Mater. Des. 96 (2016) 10-15.
DOI URL |
[27] |
K. Yusenko, S. Riva, P. Carvalho, M. Yusenko, S. Arnaboldi, A. Sukhikh, M. Hanfland, S. Gromilov, Scr. Mater. 138 (2017) 22-27.
DOI URL |
[28] | C. Sathyanarayana Raju, D. Venugopal, P. Srikanth, K. Lokeshwaran, M. Srinivas, C. Chary, A. Ashok Kumar, Mater. Today: Proc. 5 (2018) 26823-26828. |
[29] | C. Lee, Y. Chen, C. Hsu, J. Yeh, H. Shih, Thin Solid Films 518 (2008) 1301-1305. |
[30] |
Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P. Liaw, B. Yang, Corros. Sci. 133 (2018) 120-131.
DOI URL |
[31] |
C. Dai, T. Zhao, C. Du, Z. Liu, D. Zhang, J. Mater. Sci. Technol. 46 (2020) 64-73.
DOI URL |
[32] |
X. Qiu, C. Liu, J. Alloys Compd. 553 (2013) 216-220.
DOI URL |
[33] |
Y. Chou, J. Yeh, H. Shih, Corros. Sci. 52 (2010) 2571-2581.
DOI URL |
[34] |
X. Qiu, Y. Zhang, C. Liu, J. Alloys Compd. 585 (2014) 282-286.
DOI URL |
[35] |
J. Yang, J. Wu, C. Zhang, S. Zhang, B. Yang, W. Emori, J. Wang, J. Alloys Compd. 819 (2020) 152943.
DOI URL |
[36] |
Y. Zhao, M. Wang, H. Cui, Y. Zhao, X. Song, Y. Zeng, X. Gao, F. Lu, C. Wang, Q. Song, J. Alloys Compd. 805 (2019) 585-596.
DOI URL |
[37] |
Z. Zheng, X. Li, C. Zhang, J. Li, Mater. Sci. Technol. 31 (2015) 1148-1152.
DOI URL |
[38] |
Y. Qiu, S. Thomas, M. Gilbson, H. Fraser, K. Pohl, N. Birbilis, Corros. Sci. 133 (2018) 386-396.
DOI URL |
[39] |
L. Wang, D. Mercier, S. Zanna, A. Seyeux, M. Laurent-Brocq, L. Perrière, I. Guillot, P. Marcus, Corros. Sci. 167 (2020) 108507.
DOI URL |
[40] |
H. Luo, Z. Li, A. Mingers, D. Raabe, Corros. Sci. 134 (2018) 131-139.
DOI URL |
[41] | L. Zhang, G. Ma, L. Fu, J. Tian, Adv. Mater. Res. 631-632 (2013) 227-232. |
[42] |
D. Miracle, O. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[43] |
Z. Lu, H. Wang, M. Chen, I. Baker, J. Yeh, C. Liu, T. Nieh, Intermetallics 66 (2015) 67-76.
DOI URL |
[44] |
Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Acta Mater. 65 (2014) 85-97.
DOI URL |
[45] |
J. Yeh, JOM 67 (2015) 2254-2261.
DOI URL |
[46] |
J. Yeh, S. Chang, Y. Hong, S. Chen, S. Lin, Mater. Chem. Phys. 103 (2007) 41-46.
DOI URL |
[47] |
H. Luo, S. Sohn, W. Lu, L. Li, X. Li, C. Soundararajan, W. Krieger, Z. Li, D. Raabe, Nat. Commun. 11 (2020) 3081.
DOI URL |
[48] |
F. Zhang, C. Zhang, S. Chen, J. Zhu, W. Cao, U. Kattner, CAlPHAD: Comput. Coupling Phase Diagrams Thermochem. 45 (2014) 1-10.
DOI URL |
[49] | C. Tong, Y. Chen, S. Chen, J. Yeh, T. Shun, C. Tsau, S. Lin, S. Chang, Metall. Mater. Trans. A 36 (2005) 882-893. |
[50] |
C. Tong, M. Chen, S. Chen, J. Yeh, T. Shun, S. Lin, S. Chang, Metall. Mater. Trans. A 36 (2005) 1263-1271.
DOI URL |
[51] |
J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, Z. Lu, Acta Mater. 62 (2014) 105-113.
DOI URL |
[52] |
V. Hasannaeimi, A. Ayyagari, S. Muskeri, R. Salloom, S. Mukherjee, NPJ Mater. Degrad. 3 (2019) 1-8.
DOI URL |
[53] |
V. Firouzdor, K. Sridharan, G. Cao, M. Anderson, T. Allen, Corros. Sci. 69 (2013) 281-291.
DOI URL |
[54] |
Y. Kao, T. Lee, S. Chen, Y. Chang, Corros. Sci. 52 (2010) 1026-1034.
DOI URL |
[55] |
C. Lee, C. Chang, Y. Chen, J. Yeh, H. Shih, Corros. Sci. 50 (2008) 2053-2060.
DOI URL |
[56] |
A. Raza, S. Abdulahad, B. Kang, H. Ryu, S. Hong, Appl. Surf. Sci. 485 (2019) 368-374.
DOI URL |
[57] | J. Zhang, X. Yin, Y. Dong, Y. Lu, L. Jiang, T. Wang, T. Li, Mater. Res. Innovations 18 (2014) 756-760. |
[58] |
P. Marcus, J. Grimal, Corros. Sci. 33 (1992) 805-814.
DOI URL |
[59] |
R. Newman, F. Meng, K. Sieradzki, Corros. Sci. 28 (1988) 523-527.
DOI URL |
[60] |
W. Chai, T. Lu, Y. Pan, Intermetallics 116 (2020), 106654.
DOI URL |
[61] |
C. Tsau, S. Lin, C. Fang, Mater. Chem. Phys. 186 (2017) 534-540.
DOI URL |
[62] |
R. Kalsar, R. Ray, S. Suwas, Mater. Sci. Eng. A 729 (2018) 385-397.
DOI URL |
[63] |
M. Shibuya, Y. Toda, K. Sawada, H. Kushima, K. Kimura, Mater. Sci. Eng. A 528 (2011) 5387-5393.
DOI URL |
[64] |
K. Denpo, H. Ogawa, Corros. Sci. 35 (1993) 285-288.
DOI URL |
[65] |
X. Sun, L. Du, H. Lan, J. Cui, L. Wang, R. Li, Z. Liu, J. Liu, W. Zhang, J. Mater. Sci. Technol. 73 (2021) 139-144.
DOI URL |
[66] |
Y. Qiu, S. Thomas, D. Fabijanic, A. Barlow, H. Fraser, N. Birbilis, Mater. Des. 170 (2019), 107698.
DOI URL |
[67] |
Q. Wang, A. Amar, C. Jiang, H. Luan, S. Zhao, H. Zhang, G. Le, X. Liu, X. Wang, X. Yang, J. Li, Intermetallics 119 (2020), 106727.
DOI URL |
[68] | A. Takeuchi, A. Inoue, Mater. Trans. 41 (2000) 1372-1378. |
[69] |
W. Wang, J. Wang, Z. Sun, J. Li, L. Li, X. Song, X. Wen, L. Xie, X. Yang, J. Alloys Compd. 812 (2020), 152139.
DOI URL |
[70] |
C. Dai, H. Luo, J. Li, C. Du, Z. Liu, J. Yao, Appl. Surf. Sci. 499 (2020), 143903.
DOI URL |
[71] |
C. Wu, S. Zhang, C. Zhang, H. Zhang, S. Dong, J. Alloys Compd. 698 (2017) 761-770.
DOI URL |
[72] | B. Ren, R. Zhao, Z. Liu, S. Guan, H. Zhang, Rare Met. Mater. Eng. 33 (2014) 149-154. |
[73] |
Y. Hsu, W. Chiang, J. Wu, Mater. Chem. Phys. 92 (2015) 112-117.
DOI URL |
[74] |
E. Zhou, D. Qiao, Y. Yang, D. Xu, Y. Lu, J. Wang, J. Smith, H. Li, H. Zhao, P. Liaw, F. Wang, J. Mater. Sci. Technol. 46 (2020) 201-210.
DOI URL |
[75] |
W. Wang, Z. Zheng, B. Huang, J. Lai, Q. Zhou, L. Lei, D. Zeng, Intermetallics 113 (2019), 106539.
DOI URL |
[76] |
H. Zheng, R. Chen, G. Qin, X. Li, Y. Su, H. Ding, J. Guo, H. Fu, J. Mater. Sci. Technol. 38 (2020) 19-27.
DOI URL |
[77] |
Y. Yu, N. Xu, S. Zhu, Z. Qiao, J. Zhang, J. Yang, W. Liu, J. Mater. Sci. Technol. 69 (2021) 48-59.
DOI URL |
[78] |
S. Nene, M. Frank, K. Liu, S. Sinha, R. Mishra, B. McWilliams, K. Cho, Scr. Mater. 166 (2019) 168-172.
DOI URL |
[79] |
Z. Ma, L. Ren, R. Liu, K. Yang, Y. Zhang, Z. Liao, W. Liu, M. Qi, R. Misra, J. Mater. Sci. Technol. 31 (2015) 723-732.
DOI URL |
[80] |
L. Ren, Z. Ma, M. Li, Y. Zhang, W. Liu, Z. Liao, K. Yang, J. Mater. Sci. Technol. 30 (2014) 699-705.
DOI URL |
[81] |
Z. Li, C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7 (2017) 40704.
DOI URL |
[82] |
M. Speidel, Materialwiss. Werkstofftech. 37 (2006) 875-880.
DOI URL |
[83] |
Y. Yoon, H. Ha, T. Lee, S. Kim, Corros. Sci. 80 (2014) 28-36.
DOI URL |
[84] |
G. Bracq, M. Laurent-Brocq, L. Perrière, R. Pirès, J. Joubert, I. Guillot, Acta Mater. 128 (2017) 327-336.
DOI URL |
[85] |
C. Niu, C. LaRosa, J. Miao, M. Mills, M. Ghazisaeidi, Nat. Commun. 9 (2018) 1363.
DOI URL |
[86] |
W. Kai, C. Li, F. Cheng, K. Chu, R. Huang, L. Tsay, J. Kai, Corros. Sci. 108 (2016) 209-214.
DOI URL |
[87] |
S. Wong, T. Shun, C. Chang, C. Lee, Mater. Chem. Phys. 210 (2018) 146-151.
DOI URL |
[88] |
H. Torbati-Sarraf, M. Shabani, P. Jablonski, G. Pataky, A. Poursaee, Mater. Des. 184 (2019), 108170.
DOI URL |
[89] |
Z. Niu, J. Xu, T. Wang, N. Wang, Z. Han, Y. Wang, Intermetallics 112 (2019), 106550.
DOI URL |
[90] |
Q. Liu, G. Wang, X. Sui, Y. Liu, X. Li, J. Yang, J. Mater. Sci. Technol. 35 (2019) 2600-2607.
DOI URL |
[91] |
C. Yen, H. Lu, M. Tsai, B. Wu, Y. Lo, C. Wang, S. Chang, S. Yen, Corros. Sci. 157 (2019) 462-471.
DOI URL |
[92] |
S. Wang, Y. Zhao, X. Xu, P. Cheng, H. Hou, Mater. Chem. Phys. 244 (2020), 122700.
DOI URL |
[93] |
Z. Han, W. Ren, J. Yang, A. Tian, Y. Du, G. Liu, R. Wei, G. Zhang, Y. Chen, J. Alloys Compd. 816 (2020), 152583.
DOI URL |
[94] |
M. Lakatos-Varsányi, F. Falkenberg, I. Olefjord, Electrochim. Acta 43 (1998) 187-197.
DOI URL |
[95] |
C. Pan, L. Liu, Y. Li, B. Zhang, F. Wang, J. Electrochem. Soc. 159 (2012) C453-C460.
DOI URL |
[96] |
K. Sieradzki, J. Electrochem. Soc. 133 (1986) 1979.
DOI URL |
[97] | M. Ryan, S. Fujimoto, G. Thompson, R. Newman, Mater. Sci.Forum 185-188 (1995) 233-240. |
[98] |
S. Qian, R. Newman, R.A. Cottis, J. Electrochem. Soc. 137 (1990) 435-439.
DOI URL |
[99] |
X. Zhang, J. Guo, X. Zhang, Y. Song, Z. Li, X. Xing, D. Kong, J. Alloys Compd. 775 (2019) 565-570.
DOI URL |
[100] |
C. Lin, H. Tsai, H. Bor, Intermetallics 18 (2010) 1244-1250.
DOI URL |
[101] |
W. Ji, Z. Fu, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, J. Alloys Compd. 589 (2014) 61-66.
DOI URL |
[102] |
X. Qiu, J. Alloys Compd. 555 (2013) 246-249.
DOI URL |
[103] | G. Zhang, Q. Tian, K. Yin, S. Niu, M. Wu, W. Wang, Y. Wang, J. Huang, Intermetallics 119 (2020), 106722. |
[104] |
Y. Jiang, J. Li, Y. Juan, Z. Lu, W. Jia, J. Alloys Compd. 775 (2019) 1-14.
DOI URL |
[105] |
Y. Kim, H. Park, S. Mun, E. Jumaev, S. Hong, G. Song, J. Kim, Y. Park, K. Kim, S. Jeong, Y. Kwon, K. Kim, J. Alloys Compd. 797 (2019) 834-841.
DOI URL |
[106] |
W. Liao, S. Lan, L. Gao, H. Zhang, S. Xu, J. Song, X. Wang, Y. Lu, Thin Solid Films 638 (2017) 383-388.
DOI URL |
[107] |
Y. Shon, S. Joshi, S. Katakam, R. Shanker Rajamure, N. Dahotre, Mater. Lett. 142 (2015) 122-125.
DOI URL |
[108] |
Y. Zhang, X. Yan, J. Ma, Z. Lu, Y. Zhao, J. Mater. Res. 33 (2018) 3330-3338.
DOI URL |
[109] |
O. Sanni, A. Popoola, O. Fayomi, Results Phys. 9 (2018) 225-230.
DOI URL |
[110] |
G. Quartarone, T. Bellomi, A. Zingales, Corros. Sci. 45 (2003) 715-733.
DOI URL |
[111] |
G. Lu, G. Zangari, Electrochim. Acta 47 (2002) 2969-2979.
DOI URL |
[112] |
M. Hamza, S. Abd Rehim, M. Ibrahim, Arabian J. Chem. 6 (2013) 413-422.
DOI URL |
[113] |
L. Gao, A. Peng, X. Huang, Z. Gong, Appl. Surf. Sci. 511 (2020), 145446.
DOI URL |
[114] |
H. Kim, W. Kim, Corros. Sci. 89 (2014) 331-337.
DOI URL |
[115] |
H. Saifi, M. Bernard, S. Joiret, K. Rahmouni, H. Takenouti, B. Talhi, Mater. Chem. Phys. 120 (2010) 661-669.
DOI URL |
[116] |
M. Solomon, S. Umoren, Measurement 76 (2015) 104-116.
DOI URL |
[117] |
A. Sharma, M. Oh, J. Kim, A. Srivastavad, J. Alloys Compd 830 (2020), 154620.
DOI URL |
[118] |
C. Alvarado, P. Sundaram, Corros. Sci. 49 (2007) 3732-3741.
DOI URL |
[119] |
Y. Yang, C. Xia, Z. Feng, X. Jiang, B. Pan, X. Zhang, M. Ma, R. Liu, Corros. Sci. 101 (2015) 56-65.
DOI URL |
[120] |
Z. Zheng, Y. Zheng, Corros. Sci. 112 (2016) 657-668.
DOI URL |
[121] | X. Peng, Y. Zhang, J. Zhao, F. Wang, Electrochim. Acta 51 (2006), 4992-4927. |
[122] |
B. Wu, Z. Pan, S. Li, D. Cuiuri, D. Ding, H. Li, Corros. Sci. 137 (2018) 176-183.
DOI URL |
[123] |
Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, B. Li, Sci. Rep. 8 (2018) 1236.
DOI URL |
[124] |
L. Santodonato, Y. Zhang, M. Feygenson, C. Parish, M. Gao, R. Weber, J. Neuefeind, Z. Tang, P. Liaw, Nat. Commun. 6 (2015) 5964.
DOI PMID |
[125] |
Y. Liang, L. Wang, Y. Wen, B. Cheng, Q. Wu, T. Cao, Q. Xiao, Y. Xue, G. Sha, Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang, H. Cai, Nat. Commun. 9 (2018) 4043.
DOI URL |
[126] |
S. Guo, Q. Hu, C. Ng, C. Liu, Intermetallics 41 (2013) 96-103.
DOI URL |
[127] |
Y. Zhang, Y. Zhou, J. Lin, G. Chen, P. Liaw, Adv. Eng. Mater. 10 (2008) 534-538.
DOI URL |
[128] |
P. Lu, J. Saal, G. Olson, T. Li, O. Swanson, G. Frankel, A. Gerard, K. Quiambao, J. Scully, Scr. Mater. 153 (2018) 19-22.
DOI URL |
[129] |
P. Lu, J. Saal, G. Olson, T. Li, S. Sahu, O. Swanson, G. Frankel, A. Gerard, J. Scully, Scr. Mater. 172 (2019) 12-16.
DOI URL |
[1] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[2] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[3] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[4] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[5] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[6] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[7] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[8] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[9] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[10] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[11] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[12] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
[13] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[14] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
[15] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||