J. Mater. Sci. Technol. ›› 2021, Vol. 77: 163-168.DOI: 10.1016/j.jmst.2020.10.056
• Review Article • Previous Articles Next Articles
Derek Haoa, Zhi-gang Chenb,c, Monika Figielad, Izabela Stepniakd, Wei Weia, Bing-Jie Nia,*()
Received:
2020-08-17
Revised:
2020-10-05
Accepted:
2020-10-09
Published:
2021-06-30
Online:
2020-11-20
Contact:
Bing-Jie Ni
About author:
* E-mail address: bingjieni@gmail.com (B.-J. Ni).Derek Hao, Zhi-gang Chen, Monika Figiela, Izabela Stepniak, Wei Wei, Bing-Jie Ni. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction[J]. J. Mater. Sci. Technol., 2021, 77: 163-168.
Fig. 2. (a) Selectivity of NO3- electroreduction products at -0.65 V vs. RHE over Co3O4; (b) its cycle stability (Reused with permission Ref. [15]. Copyright 2019, Oxford Academic); and (c) electrochemical in situ reconstructions of CuO nanowires during NO3-RR (Reused with permission Ref. [27]. Copyright 2020, Wiley-VCH).
Materials | Light source | Scavenger | Selectivity | Refs. |
---|---|---|---|---|
BiOCl0.72 Br0.28 | 500 W Xe lamp | No | 14.5 % of NO3- is converted to NH3 | [ |
TiO2 | 25 W fluorescent lamp | Formic acid | 4.2 ± 0.2 selectivity | [ |
Cu0.9 Ag/TiO2 | black light (max: 352 nm) | Methanol | 85 % of NO3- is converted to NH3 | [ |
Au/TiO2 | 400 W UV light | Oxalic acid | 39 % selectivity | [ |
Sn-Pd/TiO2 | LED (8 W) | Ethanol | 23 % selectivity | [ |
Sn-Pd/Pt/TiO2 | LED (8 W) | Ethanol | 24 % selectivity | [ |
BiOCl | 300 W Hg lamp | Sodium acetate | About 20 % selectivity | [ |
Cu2 O/TiO2 | 400 W UV light | Oxalic acid | 45.7 % selectivity | [ |
Pt/SrTiO3 :Rh + SnPd/Al2 O3 | 300 W Xe lamp | Methanol | 10 % selectiviy | [ |
MOF NU-1000 | Blue LED | Ascorbic acid | 89 % selectivity | [ |
PdSn/NiO/NaTaO3 :La | 125 W Hg lamp | Formic acid | 72 % selectivity | [ |
Table 1. Some photocatalysts for NO3- reduction to ammonia and its selectivity.
Materials | Light source | Scavenger | Selectivity | Refs. |
---|---|---|---|---|
BiOCl0.72 Br0.28 | 500 W Xe lamp | No | 14.5 % of NO3- is converted to NH3 | [ |
TiO2 | 25 W fluorescent lamp | Formic acid | 4.2 ± 0.2 selectivity | [ |
Cu0.9 Ag/TiO2 | black light (max: 352 nm) | Methanol | 85 % of NO3- is converted to NH3 | [ |
Au/TiO2 | 400 W UV light | Oxalic acid | 39 % selectivity | [ |
Sn-Pd/TiO2 | LED (8 W) | Ethanol | 23 % selectivity | [ |
Sn-Pd/Pt/TiO2 | LED (8 W) | Ethanol | 24 % selectivity | [ |
BiOCl | 300 W Hg lamp | Sodium acetate | About 20 % selectivity | [ |
Cu2 O/TiO2 | 400 W UV light | Oxalic acid | 45.7 % selectivity | [ |
Pt/SrTiO3 :Rh + SnPd/Al2 O3 | 300 W Xe lamp | Methanol | 10 % selectiviy | [ |
MOF NU-1000 | Blue LED | Ascorbic acid | 89 % selectivity | [ |
PdSn/NiO/NaTaO3 :La | 125 W Hg lamp | Formic acid | 72 % selectivity | [ |
[1] |
J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 1 (2008) 636-639.
DOI URL |
[2] | J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Science 360 (2018) 7. |
[3] | H. Kobayashi, A. Hayakawa, K. Somarathne, E.C. Okafor, Proc. Combust. Inst. 37 (2019) 109-133. |
[4] |
R.R. Eady, J.R. Postgate, Nature 249 (1974) 805-810.
URL PMID |
[5] | R.V. Hageman, R.H. Burris, Proc. Natl. Acad. Sci. U. S. A. 75 (1978) 2699-2702. |
[6] |
Q. Hao, C. Liu, G. Jia, Y. Wang, H. Arandiyan, W. Wei, B.J. Ni, Mater. Horiz. 7 (2020) 1014-1029.
DOI URL |
[7] |
Z.Y. Zhang, A.C. Chen, Sep. Purif. Technol. 164 (2016) 107-113.
DOI URL |
[8] |
S.Y. Yin, Y. Xiao, X.M. Gu, Q.C. Hao, H.L. Liu, Z.Y. Hao, G.P. Meng, X.Y. Pan, Q.M. Pei, Acta Geophys. 67 (2019) 1191-1203.
DOI URL |
[9] |
W.H. Guo, K.X. Zhang, Z.B. Liang, R.Q. Zou, Q. Xu, Chem. Soc. Rev. 48 (2019) 5658-5716.
DOI URL |
[10] |
Y. Liu, B.M. Huang, X.F. Chen, Z.Q. Tian, X.Y. Zhang, P. Tsiakaras, P.K. Shen, Appl. Catal. B 271 (2020), 118919.
DOI URL |
[11] |
J. Li, H. Li, G.M. Zhan, L.Z. Zhang, Acc. Chem. Res. 50 (2017) 112-121.
DOI URL |
[12] |
X.L. Xue, R.P. Chen, C.Z. Yan, P.Y. Zhao, Y. Hu, W.J. Zhang, S.Y. Yang, Z. Jin, Nano Res. 12 (2019) 1229-1249.
DOI URL |
[13] |
H. Li, J. Shang, Z.H. Ai, L.Z. Zhang, J. Am. Chem. Soc. 137 (2015) 6393-6399.
DOI URL |
[14] |
X. Zhang, Y. Wang, C. Liu, Y. Yu, S. Lu, B. Zhang, Chem. Eng. J. 403 (2021), 126269.
DOI URL |
[15] |
Y.T. Wang, Y.F. Yu, R.R. Jia, C. Zhang, B. Zhang, Natl. Sci. Rev. 6 (2019) 730-738.
DOI URL |
[16] |
Y.X. Zhao, R. Shi, X.A.N. Bian, C. Zhou, Y.F. Zhao, S. Zhang, F. Wu, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Adv. Sci. 6 (2019), 1802109.
DOI URL |
[17] |
B. Hu, M. Hu, L. Seefeldt, T.L. Liu, ACS Energy Lett. 4 (2019) 1053-1054.
DOI URL |
[18] |
C. Tang, S.Z. Qiao, Chem. Soc. Rev. 48 (2019) 3166-3180.
DOI URL |
[19] |
X. Ren, G.W. Cui, L. Chen, F.Y. Xie, Q. Wei, Z.Q. Tian, X.P. Sun, Chem. Commun. 54 (2018) 8474-8477.
DOI URL |
[20] |
Y.C. Hao, Y. Guo, L.W. Chen, M. Shu, X.Y. Wang, T.A. Bu, W.Y. Gao, N. Zhang, X. Su, X. Feng, J.W. Zhou, B. Wang, C.W. Hu, A.X. Yin, R. Si, Y.W. Zhang, C.H. Yan, Nat. Catal. 2 (2019) 448-456.
DOI URL |
[21] | J. Choi, H.L. Du, M. Chatti, B.H.R. Suryanto, A.N. Simonov, D. Macfarlane, 2020. https://chemrxiv.org/articles/Promoting_Nitrogen_Electroreduction_to_Ammonia_with_Bismuth_Nanocrystals_and_Potassium_Cations_in_Water/11768814/1. |
[22] |
H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, ACS Catal. 7 (2017) 3713-3720.
DOI URL |
[23] |
H. Huang, M. Zhao, X. Xing, I. Bae, D. Scherson, J. Electroanal. Chem. Interfacial Electrochem. 293 (1990) 279-284.
DOI URL |
[24] |
D. De, E.E. Kalu, P.P. Tarjan, J.D. Englehardt, Chem. Eng. Technol. 27 (2004) 56-64.
DOI URL |
[25] |
J. Martinez, A. Ortiz, I. Ortiz, Appl. Catal. B 207 (2017) 42-59.
DOI URL |
[26] |
J.M. McEnaney, S.J. Blair, A.C. Nielander, J.A. Schwalbe, D.M. Koshy, M. Cargnello, T.F. Jaramillo, ACS Sustain. Chem. Eng. 8 (2020) 2672-2681.
DOI URL |
[27] |
Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 132 (2020) 5388-5392.
DOI URL |
[28] |
Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D.H. Nam, C.S. Tan, Y. Ding, J. Wu, Y. Lum, C.T. Dinh, D. Sinton, G. Zheng, E.H. Sargent, J. Am. Chem. Soc. 142 (2020) 5702-5708.
DOI URL |
[29] |
G.F. Chen, Y.F. Yuan, H.F. Jiang, S.Y. Ren, L.X. Ding, L. Ma, T.P. Wu, J. Lu, H.H. Wang, Nat. Energy 5 (2020) 605-613.
DOI URL |
[30] |
H. Choi, A.W. Peters, H. Noh, L.C. Gallington, A.E. Platero-Prats, M.R. DeStefano, M. Rimoldi, S. Goswami, K.W. Chapman, O.K. Farha, J.T. Hupp, ACS Appl. Energy Mater. 2 (2019) 8695-8700.
DOI URL |
[31] |
N. Tong, Y. Wang, Y. Liu, M.B. Li, Z.Z. Zhang, H.J. Huang, T. Sun, J.X. Yang, F.Y. Li, X.X. Wang, J. Catal. 361 (2018) 303-312.
DOI URL |
[32] |
L.Y. Wang, S.Q. Guo, Y.T. Chen, M.L. Pan, E.H. Ang, Z.H. Yuan, Chemphotochem 4 (2020) 110-119.
DOI URL |
[33] |
J.M. Freire, M.A. Matos, D.S. Abreu, H. Becker, I.C. Diógenes, A. Valentini, E. Longhinotti, J. Environ. Chem. Eng. 8 (2020), 103844.
DOI URL |
[34] |
R. Kato, M. Furukawa, I. Tateishi, H. Katsumata, S. Kaneco, ChemEngineering 3 (2019) 49.
DOI URL |
[35] |
J.A. Anderson, Catal. Today 181 (2012) 171-176.
DOI URL |
[36] |
J. Hirayama, H. Kondo, Y.K. Miura, R. Abe, Y. Kamiya, Catal. Commun. 20 (2012) 99-102.
DOI URL |
[37] |
S.Q. Guo, X.H. Zhu, H.J. Zhang, B.C. Gu, W. Chen, L. Liu, P.J. Alvarez, Environ. Sci. Technol. 52 (2018) 6872-6880.
DOI URL |
[38] |
H. Adamu, A.J. McCue, R.S. Taylor, H.G. Manyar, J.A. Anderson, Appl. Catal. B 217 (2017) 181-191.
DOI URL |
[39] |
J. Hirayama, R. Abe, Y. Kamiya, Appl. Catal. B 144 (2014) 721-729.
DOI URL |
[40] |
K. Ithisuphalap, H.G. Zhang, L. Guo, Q.G. Yang, H.P. Yang, G. Wu, Small Methods 3 (2019), 1800352.
DOI URL |
[41] |
S.Y. Wang, F. Ichihara, H. Pang, H. Chen, J.H. Ye, Adv. Funct. Mater. 28 (2018), 1803309.
DOI URL |
[42] |
R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu, B. Zhang, ACS Catal. 10 (2020) 3533-3540.
DOI URL |
[43] |
L. Lu, Z. Li, X. Chen, H. Wang, S. Dai, X. Pan, Z.J. Ren, J. Gu, Joule 4 (2020) 2149-2161.
DOI URL |
[44] |
K. Han, J. Luo, Y. Feng, L. Xu, W. Tang, Z. Wang, Energy Environ. Sci. 13 (2020) 2450-2458.
DOI URL |
[45] |
S.Y. Gao, Y.Z. Zhu, Y. Chen, M. Tian, Y.J. Yang, T. Jiang, Z.L. Wang, Mater. Today 28 (2019) 17-24.
DOI URL |
[1] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[2] | Wuyou Wang, Xuewen Wang, Lei Gan, Xinfei Ji, Zili Wu, Rongbin Zhang. All-solid-state Z-scheme BiVO4-Bi6O6(OH)3(NO3)3 heterostructure with prolonging electron-hole lifetime for enhanced photocatalytic hydrogen and oxygen evolution [J]. J. Mater. Sci. Technol., 2021, 77(0): 117-125. |
[3] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[4] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[5] | Thanh-Tung Le, Xiao Liu, Peijun Xin, Qing Wang, Chunyan Gao, Ye Wu, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Zhiwen Chen. Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites [J]. J. Mater. Sci. Technol., 2021, 74(0): 168-175. |
[6] | Xiangang Lin, Xiaojuan Hou, Lixia Cui, Shiqiang Zhao, Hong Bi, Haiwei Du, Yupeng Yuan. Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 65(0): 164-170. |
[7] | Xian Yue, Junhui Xiang, Junyong Chen, Huaxin Li, Yunsheng Qiu, Xianbo Yu. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization [J]. J. Mater. Sci. Technol., 2020, 47(0): 223-230. |
[8] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
[9] | Xiaoyi Shen, Hongmei Shao, Yan Liu, Yuchun Zhai. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51(0): 1-7. |
[10] | Yunfeng Li, Minghua Zhou, Bei Cheng, Yan Shao. Recent advances in g-C3N4-based heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 1-17. |
[11] | Duoduo Gao, Ranran Yuan, Jiajie Fan, Xuekun Hong, Huogen Yu. Highly efficient S2--adsorbed MoSx-modified TiO2 photocatalysts: A general grafting strategy and boosted interfacial charge transfer [J]. J. Mater. Sci. Technol., 2020, 56(0): 122-132. |
[12] | Meng-Jie Chang, Wen-Na Cui, Jun Liu, Kang Wang, Hui-Ling Du, Lei Qiu, Si-Meng Fan, Zhen-Min Luo. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis [J]. J. Mater. Sci. Technol., 2020, 36(0): 97-105. |
[13] | Panyong Kuang, Jingxiang Low, Bei Cheng, Jiaguo Yu, Jiajie Fan. MXene-based photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 18-44. |
[14] | Jianying Huang, Jiali Shen, Shuhui Li, Jingsheng Cai, Shanchi Wang, Yao Lu, Jihuan He, Claire J.Carmalt, Ivan P.Parkin, Yuekun Lai. TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation [J]. J. Mater. Sci. Technol., 2020, 39(0): 28-38. |
[15] | Fengli Liang, Ziqiong Yang, Haipeng Deng, Jaka Sunarso, Lili Yang, Junkui Mao. Enhancement of oxygen evolution reaction activity and durability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ by CO2 thermal treatment [J]. J. Mater. Sci. Technol., 2019, 35(6): 1184-1191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||