J. Mater. Sci. Technol. ›› 2021, Vol. 77: 169-177.DOI: 10.1016/j.jmst.2020.11.015
• Research Article • Previous Articles Next Articles
Xuepeng Nia,b, Zhe Cuia,b, Ning Jianga,b, Huifang Chena,b,c, Qilin Wua,b, Anqi Jua,b,c,*(
), Meifang Zhua,b,c
Received:2020-07-03
Revised:2020-09-02
Accepted:2020-09-22
Published:2021-06-30
Online:2020-11-13
Contact:
Anqi Ju
About author:* College of Materials Science and Engineering & Shanghai Collaborative Innovation Center for High Performance Fiber Composites, Donghua University, Shanghai, 201620, China. E-mail address: anqiju@163.com (A. Ju).Xuepeng Ni, Zhe Cui, Ning Jiang, Huifang Chen, Qilin Wu, Anqi Ju, Meifang Zhu. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density[J]. J. Mater. Sci. Technol., 2021, 77: 169-177.
Fig. 2. (a) XRD patterns of the NHMCFs, F2-MoS2/NHMCFs, S1-MoS2/NHMCFs and commercial MoS2 and (b) XRD patterns of partial amplification of all the samples. (c) Raman spectra of all the samples. (d and inset) N2 adsorption-desorption isothermal curves and pore-size distribution curves of F2-MoS2/NHMCFs and S1-MoS2/NHMCFs.
Fig. 4. (a) CV curves of the F2-MoS2/NHMCFs at a scan rate of 0.1 mV s-1. (b) The discharge/charge profiles of the F2-MoS2/NHMCFs at a current density of 1 A g-1. (c) The cycle performance of F2-MoS2/NHMCFs and S1-MoS2/NHMCFs at a current density of 1 A g-1 and (d) the rate capability of F2-MoS2/NHMCFs at various current densities. (e) Stability performance and CE of F2-MoS2/NHMCFs at 5 and 10 A g-1 over 2000 cycles, respectively.
Fig. 5. (a) CV curves of the F2-MoS2/NHMCFs at different scan rates from 0.2 mV s-1 to 0.8 mV s-1. (b) Current response vs. the scan rate of the F2-MoS2/NHMCFs at the potentials of peak 1 and peak 2. (c) b values vs. battery potential of the F2-MoS2/NHMCFs for anodic and cathodic scans, insert: current vs. scan rate of the F2-MoS2/NHMCFs at different potentials. (d) Contribution ratios of the capacitive capacity of the F2-MoS2/NHMCFs at different scan rates.
| [1] |
H. Yoo, A.P. Tiwari, J. Lee, D. Kim, J.H. Park, H. Lee, Nanoscale 7 (2015) 3404-3409.
DOI URL |
| [2] |
S. Ding, J.S. Chen, X.W. Lou, Chem-Eur. J. 17 (2011) 13142-13145.
DOI URL |
| [3] |
K. Chang, W. Chen, Chem. Commun. 47 (2011) 4252-4254.
DOI URL |
| [4] |
S. Dan, D. Ye, L. Ping, Y. Tang, H. Wang, Adv. Energy Mater. 8 (2017), 1702383.
DOI URL |
| [5] |
L. Zhang, W. Fan, T. Liu, RSC Adv. 5 (2015) 43130-43140.
DOI URL |
| [6] |
L. Chen, H. Jiang, Y. Hu, H. Wang, C. Li, Sci. China Mater. 61 (2018) 1049-1056.
DOI URL |
| [7] |
H. Zhou, P. Lv, X. Lu, X. Hou, M. Zhao, J. Huang, X. Xia, Q. Wei, ChemSusChem 12 (2019) 5075-5080.
DOI URL |
| [8] |
X. Zhang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Diao, M. Chen, ACS Nano 11 (2017) 8429-8436.
DOI URL PMID |
| [9] |
Z. Wan, J. Shao, J. Yun, H. Zheng, T. Gao, M. Shen, Q. Qu, H. Zheng, Small 10 (2014) 4975-4981.
DOI URL |
| [10] |
S. Park, J. Lee, S. Bong, B. Jang, K. Seong, Y. Piao, ACS Appl. Mater. Interface 8 (2016) 19456-19465.
DOI URL |
| [11] |
X. Xie, T. Makaryan, M. Zhao, K.L. Va. Aken, Y. Gogotsi, G. Wang, Adv. Energy Mater. 6 (2016), 1502161.
DOI URL |
| [12] |
Z. Zhao, F. Qin, S. Kasiraju, L. Xie, K. Alam, S. Chen, D. Wang, Z. Ren, Z. Wang, L.C. Grabow, ACS Catal. 7 (2017) 7312-7318.
DOI URL |
| [13] | D. Li, S. Zhang, Q. Zhang, P. Kaghazchi, H. Qi, J. Liu, Z. Guo, L. Wang, Y. Wang, Energy Storage Mater. 26 (2020) 593-603. |
| [14] |
C. Wang, W. Wan, Y. Huang, J. Chen, H. Zhou, X. Zhang, Nanoscale 6 (2014) 5351-5358.
DOI URL |
| [15] |
W. Li, R. Bi, G. Liu, Y. Tian, L. Zhang, ACS Appl. Mater. Interface 10 (2018) 26982-26989.
DOI URL |
| [16] |
Q. Liu, J. Huo, Z. Ma, Z. Wu, S. Wang, Electrochim. Acta 206 (2016) 52-60.
DOI URL |
| [17] | Y. Zhou, Y. Liu, W. Zhao, F. Xie, R. Xu, B. Li, X. Zhou, H. Shen, J. Mater. Chem. 4 (2016) 5932-5941. |
| [18] |
H. Sun, H. Liu, Z. Hou, R. Zhou, X. Liu, J. Wang, Chem. Eng. J. 387 (2020), 124204.
DOI URL |
| [19] | Z. Zhang, S. Wu, J. Cheng, W. Zhang, Energy Storage Mater. 15 (2018) 65-74. |
| [20] |
X. Ni, H. Chen, C. Liu, F. Zeng, H. Yu, A. Ju, J. Alloys Compd. 818 (2020), 152835.
DOI URL |
| [21] |
A. Ju, S. Guang, H. Xu, Carbon 54 (2013) 323-335.
DOI URL |
| [22] |
C. Zhao, C. Yu, M. Zhang, Q. Sun, S. Li, M.N. Banis, X. Han, Q. Dong, J. Yang, G. Wang, Nano Energy 41 (2017) 66-74.
DOI URL |
| [23] |
Z. Shi, W. Kang, J. Xu, L. Sun, C. Wu, L. Wang, Y. Yu, D.Y.W. Yu, W. Zhang, C. Lee, Small 11 (2015) 5667-5674.
DOI URL |
| [24] |
S. Zhang, B.V.R. Chowdari, Z. Wen, J. Jin, J. Yang, ACS Nano 9 (2015) 12464-12472.
DOI URL |
| [25] | Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang, L. Fu, Adv. Energy Mater. 7 (2017) 1602681-1602684. |
| [26] |
X. Fan, P. Xu, D. Zhou, Y. Sun, Y.C. Li, M.A.T. Nguyen, M. Terrones, T.E. Mallouk, Nano Lett. 15 (2015) 5956-5960.
DOI URL |
| [27] |
Q. Liu, X. Weijun, Z. Wu, J. Huo, D. Liu, Q. Wang, S. Wang, Nanotechnology 27 (2016), 175402-175402.
DOI URL |
| [28] |
S. Liu, W. Lei, Y. Liu, W. Zhang, Chem. Eng. J. 357 (2019) 112-119.
DOI URL |
| [29] |
J. Liang, Z. Wei, C. Wang, J. Ma, Electrochim. Acta 285 (2018) 301-308.
DOI URL |
| [30] |
X. Zhao, G. Wang, X. Liu, X. Zheng, H. Wang, Nano Res. 11 (2018) 3603-3618.
DOI URL |
| [31] |
G. Barik, S. Pal, Phys. Chem. Chem. Phys. 22 (2020) 1701-1714.
DOI URL |
| [32] |
Q. Pan, Q. Zhang, F. Zheng, Y. Liu, Y.Y. Li, X. Ou, X. Xiong, C. Yang, M. Liu, ACS Nano 12 (2018) 12578-12586.
DOI URL |
| [33] |
X. Yu, H. Hu, Y. Wang, H. Chen, X.W.D. Lou, Angew. Chem. Int. Ed. 54 (2015) 7395-7398.
DOI URL |
| [34] |
B. Chen, Y. Meng, F. He, E. Liu, C. Shi, C. He, L. Ma, Q. Li, J. Li, N. Zhao, Nano Energy 41 (2017) 154-163.
DOI URL |
| [35] |
F. Meng, M. Song, Y. Wei, Y. Wang, Environ. Sci. Pollut. R. 26 (2019) 7195-7204.
DOI URL |
| [36] |
Y. Guo, X. Zhang, X. Zhang, T. You, J. Mater. Chem. A 3 (2015) 15927-15934.
DOI URL |
| [37] | Z. Li, A. Ottmann, T. Zhang, Q. Sun, H. Meyer, Y. Vaynzof, J. Xiang, R. Klingeler, J. Mater. Chem. 5 (2017) 3987-3994. |
| [38] |
H. Wu, C. Hou, G. Shen, T. Liu, Y. Shao, R. Xiao, H. Wang, Nano Res. 11 (2018) 5866-5878.
DOI URL |
| [39] |
C. Zhao, J. Kong, X. Yao, X. Tang, Y. Dong, S.L. Phua, X. Lu, ACS Appl. Mater. Interface 6 (2014) 6392-6398.
DOI URL |
| [40] |
G. Liu, J. Cui, R. Luo, Y. Liu, X. Huang, N. Wu, X. Jin, H. Chen, S. Tang, J.K. Kim, Appl. Surf. Sci. 469 (2019) 854-863.
DOI URL |
| [41] |
J. Yuan, J. Zhu, R. Wang, Y. Deng, S. Zhang, C. Yao, Y. Li, X. Li, C. Xu, Chem. Eng. J. 398 (2020), 125592.
DOI URL |
| [42] |
Y. Zhang, H. Tao, T. Li, S. Du, J. Li, Y. Zhang, X. Yang, ACS Appl. Mater. Interface 10 (2018) 35206-35215.
DOI URL |
| [43] |
Y. Fang, D. Luan, Y. Chen, S. Gao, X. Lou, Angew. Chem. Int. Ed. 59 (2020) 7178-7183.
DOI URL |
| [1] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
| [2] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
| [3] | Leilei Chen, Jun Xu, Yi Wang, Rongqin Huang. Ultra-small MoS2 nanodots-incorporated mesoporous silica nanospheres for pH-sensitive drug delivery and CT imaging [J]. J. Mater. Sci. Technol., 2021, 63(0): 91-96. |
| [4] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
| [5] | Yaochen Sheng, LuFang Zhang, Feng Li, Xinyu Chen, Zhijian Xie, Haiyan Nan, Zihan Xu, David Wei Zhang, Jianhao Chen, Yong Pu, Shaoqing Xiao, Wenzhong Bao. A novel contact engineering method for transistors based on two-dimensional materials [J]. J. Mater. Sci. Technol., 2021, 69(0): 15-19. |
| [6] | Peng Chen, Shilin Zeng, Yunliang Zhao, Shichang Kang, Tingting Zhang, Shaoxian Song. Synthesis of unique-morphological hollow microspheres of MoS2@montmorillonite nanosheets for the enhancement of photocatalytic activity and cycle stability [J]. J. Mater. Sci. Technol., 2020, 41(0): 88-97. |
| [7] | Yi Sun, Jian Huang, Hongfa Xiang, Xin Liang, Yuezhan Feng, Yan Yu. 2-(Trifluoroacetyl) thiophene as an electrolyte additive for high-voltage lithium-ion batteries using LiCoO2 cathode [J]. J. Mater. Sci. Technol., 2020, 55(0): 198-202. |
| [8] | Zizhan Liang, Rongchen Shen, Hau Ng Yun, Peng Zhang, Quanjun Xiang, Xin Li. A review on 2D MoS2 cocatalysts in photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 89-121. |
| [9] | Meng-Jie Chang, Wen-Na Cui, Jun Liu, Kang Wang, Hui-Ling Du, Lei Qiu, Si-Meng Fan, Zhen-Min Luo. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis [J]. J. Mater. Sci. Technol., 2020, 36(0): 97-105. |
| [10] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
| [11] | K. Silambarasan, J. Archana, S. Harish, M. Navaneethan, R. Sankar Ganesh, S. Ponnusamy, C. Muthamizhchelvan, K. Hara. One-step fabrication of ultrathin layered 1T@2H phase MoS2 with high catalytic activity based counter electrode for photovoltaic devices [J]. J. Mater. Sci. Technol., 2020, 51(0): 94-101. |
| [12] | Rongan He, Haijuan Liu, Huimin Liu, Difa Xu, Liuyang Zhang. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance [J]. J. Mater. Sci. Technol., 2020, 52(0): 145-151. |
| [13] | Xianrui Xie, Yujie Chen, Xiaoyu Wang, Xiaoqing Xu, Yihong Shen, Atta ur Rehman Khan, Ali Aldalbahi, Allison E. Fetz, Gary L. Bowlin, Mohamed El-Newehy, Xiumei Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 243-261. |
| [14] | Zhang Peng, Ru Qiang, Yan Honglin, Hou Xianhua, Chen Fuming, Hu Shejun, Zhao Lingzhi. Hierarchically 3D structured milled lamellar MoS2/nano-silicon@carbon hybrid with medium capacity and long cycling sustainability as anodes for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(9): 1840-1850. |
| [15] | Yujie Zheng, Bingjie Liu, Pei Cao, Hui Huang, Jing Zhang, Guowei Zhou. Fabrication of flower-like mesoporous TiO2 hierarchical spheres with ordered stratified structure as an anode for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(4): 667-673. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
