J. Mater. Sci. Technol. ›› 2021, Vol. 76: 222-230.DOI: 10.1016/j.jmst.2020.10.038
• Research Article • Previous Articles Next Articles
Yong Hee Joa, Junha Yanga, Won-Mi Choia, Kyung-Yeon Dohb, Donghwa Leeb, Hyoung Seop Kima,c, Byeong-Joo Leea, Seok Su Sohnd,*(), Sunghak Leea,*(
)
Received:
2020-08-04
Revised:
2020-09-21
Accepted:
2020-10-13
Published:
2021-06-20
Online:
2020-11-05
Contact:
Seok Su Sohn,Sunghak Lee
About author:
shlee@postech.ac.kr (S. Lee).Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys[J]. J. Mater. Sci. Technol., 2021, 76: 222-230.
Alloy | Si | V | Cr | Mn | Fe | Co |
---|---|---|---|---|---|---|
2Si | 1.92 | 6.71 | 10.46 | 5.31 | 45.84 | 29.76 |
4Si | 3.80 | 4.90 | 10.13 | 4.92 | 46.15 | 30.10 |
7Si | 7.14 | 1.93 | 10.29 | 4.90 | 46.10 | 29.64 |
Table 1 Chemical compositions of the as-annealed SixV(9-x)Cr10Mn5Fe46Co30 HEAs measured from the inductively coupled plasma-optical emission spectrometry (ICP-OES). (unit: at.%).
Alloy | Si | V | Cr | Mn | Fe | Co |
---|---|---|---|---|---|---|
2Si | 1.92 | 6.71 | 10.46 | 5.31 | 45.84 | 29.76 |
4Si | 3.80 | 4.90 | 10.13 | 4.92 | 46.15 | 30.10 |
7Si | 7.14 | 1.93 | 10.29 | 4.90 | 46.10 | 29.64 |
Fig. 1. (a) Equilibrium phase diagram of SixV(9-x)Cr10Mn5Fe46Co30 system obtained from thermodynamic calculations in the 900-1800 K range and (b) variation in intrinsic SFE (ISFE) obtained from Ab-initio calculations at 0 K as a function of Si content.
Fig. 2. EBSD phase maps of the as-annealed (a) 2Si, (b) 4Si, and (c) 7Si alloys. Average grains size (Dave) is shown below each phase map. (d) SEM-energy dispersive spectroscopy (SEM-EDS) mappings of Si, V, Cr, Mn, Fe, and Co of the selected area in (c).
Fig. 3. TEM bright- and dark-field (BF and DF) images and selected area diffraction (SAD) patterns of the as-annealed (a) 2Si, (b) 4Si, and (c) 7Si alloys. Stacking faults and HCP phase are identified by DF images and SAD patterns, and are indicated by arrows.
Fig. 5. Room-temperature (a) engineering tensile stress-strain and (b) strain-hardening rate-true strain curves of the three alloys. The tensile strength improves in the increasing order of the 2Si, 4Si, and 7Si alloys.
Fig. 6. Volume fractions of (a) FCC, (b) HCP, and (c) BCC phases (VFCC, VHCP, and VBCC) measured from the XRD data as a function of true strain for the three alloys. The VFCC decreases gradually as the true strain increases, which indicates the DIMT occurs steadily as the deformation proceeds.
Fig. 7. EBSD phase maps superimposed by each image quality (IQ) map of the half-sectioned area of the tensile-strained specimens in the (a-c) earlier and (d-f) later deformation stages (true strain ranges of 5.5-8 and 17-23 %, respectively) for the three alloys.
Fig. 8. EBSD (a) phase, (b) inverse pole figure (IPF), and (c) IQ maps for the 7Si alloy deformed to a true strain of 5.5 %. The detailed orientation relationship (OR) between each phase is revealed by the pole figure analyses of (d) FCC, (e) HCP, and (f) BCC phases.
Alloy | ΔGFCC→HCP (Jmol-1) | ΔGFCC→BCC (Jmol-1) |
---|---|---|
2Si | 1030.4 | -4924.6 |
4Si | 850.8 | -4975.9 |
7Si | 480.5 | -4790.3 |
Table 2 Difference in Gibbs free energies between HCP and FCC (ΔGFCC→HCP) and BCC and FCC (ΔGFCC→BCC) at 298 K was calculated by using the Thermo-Calc software [[18], [19], [20], [21]] and actual alloy compositions (Table 1).
Alloy | ΔGFCC→HCP (Jmol-1) | ΔGFCC→BCC (Jmol-1) |
---|---|---|
2Si | 1030.4 | -4924.6 |
4Si | 850.8 | -4975.9 |
7Si | 480.5 | -4790.3 |
Alloy | α | β | R2 |
---|---|---|---|
2Si | 5.54 | 2.85 | 0.999 |
4Si | 7.66 | 3.91 | 0.997 |
7Si | 10.24 | 2.15 | 0.982 |
Table 3 Magnitudes of kinetics parameters (α and β) and adjusted R-squared (R2) determined from the transformation data by using Eq. (2).
Alloy | α | β | R2 |
---|---|---|---|
2Si | 5.54 | 2.85 | 0.999 |
4Si | 7.66 | 3.91 | 0.997 |
7Si | 10.24 | 2.15 | 0.982 |
Fig. 9. Comparison data of room-temperature tensile strength and elongation of the present SixV(9-x)Cr10Mn5Fe46Co30 HEAs with multi-component alloys whose characteristic deformations are classified into slip, TWIP, HCP-DIMT, and BCC-DIMT. The present SixV(9-x)Cr10Mn5Fe46Co30 alloys show the much higher tensile strength than the well-known FCC-single-phase CrMnFeCoNi alloy, while their elongation is similar. In particular, the 7Si alloy has the superior tensile strength beyond 1 GPa [2,4,[6], [7], [8],10,12,31,[47], [48], [49]].
[1] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science, 345 (2014), pp. 1153-1158
DOI URL |
[2] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater., 61 (2013), pp. 5743-5755
DOI URL |
[3] |
E.P. George, W.A. Curtin, C.C. Tasan, Acta Mater., 188 (2020), pp. 435-474
DOI URL |
[4] | M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, Scripta Mater., 72 (2014), pp. 5-8 |
[5] |
W. Guo, S. Jing, L. Wenjun, C.H. Liebscher, C. Kirchlechner, Y. lkeda, F. Körmann, L. Xuan, X. Yunfei, G. Dehm, Acta Mater., 185 (2020), pp. 45-54
DOI URL |
[6] |
S.F. Liu, Y. Wu, H.T. Wang, W.T. Lin, Y.Y. Shang, J.B. Liu, K. An, X.J. Liu, H. Wang, Z.P. Lu, J. Alloy Comp., 792 (2019), pp. 444-455
DOI URL |
[7] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature, 534 (2016), pp. 227-230
DOI URL |
[8] | D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W.M. Choi, B.-J. Lee, H.S. Kim, H. Kato, A. Chiba, Scr. Mater., 165 (2019), pp. 39-43 |
[9] |
J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.-J. Lee, H.S. Kim, Acta Mater., 161 (2018), pp. 388-399
DOI URL |
[10] |
Y.H. Jo, W.M. Chol, D.G. Kim, A. Zargaran, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim, S. Lee, Sci. Rep., 9 (2019), p. 2948
DOI URL |
[11] |
Y.H. Jo, D.G. Kim, M.C. Jo, K.-Y. Doh, S.S. Sohn, D. Lee, H.S. Kim, B.J. Lee, S. Lee, J. Alloy Comp., 785 (2019), pp. 1056-1067
DOI URL |
[12] |
J. Yang, Y.H. Jo, D.W. Kim, W.-M. Choi, H.S. Kim, B.-J. Lee, S.S. Sohn, S. Lee, Mater. Sci. Eng. A, 772 (2020), p. 138809
DOI URL |
[13] |
L. Bracke, G. Mertens, J. Penning, B.C. De Cooman, M. Liebeherr, N. Akdut, Metall. Mater. Trans. A, 37 (2006), pp. 307-317
DOI URL |
[14] |
S.S. Sohn, S. Hong, J. Lee, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, S. Lee, Acta Mater., 100 (2015), pp. 39-52
DOI URL |
[15] |
Z. Li, D. Raabe, Mater. Chem. Phys., 210 (2018), pp. 29-36
DOI URL |
[16] |
J.H. Hwang, T.T. Trang, O. Lee, G. Park, A. Zargaran, N.J. Kim, Acta Mater., 191 (2020), pp. 1-12
DOI URL |
[17] |
N.H. Moser, T.S. Gross, Y.P. Korkolis, Metall. Trans. A, 45 (2014), pp. 4891-4896
DOI URL |
[18] |
B. Sundman, B. Jansson, J.O. Andersson, Calphad, 9 (1985), pp. 153-190
DOI URL |
[19] | B.-J. Lee, B. Sundman TCFE2000: The Thermo-Calc Steels Database, KTH, Stockholm (1999) |
[20] |
W.-M. Choi, Y.H. Jo, D.G. Kim, S.S. Sohn, S. Lee, B.-J. Lee, J. Phase Equilib. Diffus., 39 (2018), pp. 694-701
DOI URL |
[21] |
W.-M. Choi, Y.H. Jo, D.G. Kim, S.S. Sohn, S. Lee, B.-J. Lee, Calphad, 66 (2019), p. 101624
DOI URL |
[22] |
L. Vitos, H. Skriver, B. Johansson, J. Kollár, Comput. Mater. Sci., 18 (2000), pp. 24-38
DOI URL |
[23] |
L. Vitos, Phys. Rev. B, 64 (2001), p. 014107
DOI URL |
[24] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77 (1996), p. 3865
DOI URL |
[25] |
L. Vitos, I.A. Avrikosov, B. Johansson, Phys. Rev. Lett., 87 (2001), p. 156401
PMID |
[26] |
J. Staunton, B.L. Gyorffy, A.J. Pindor, G.M. Stocks, H. Winter, J. Magn. Magn. Mater., 45 (1984), pp. 15-22
DOI URL |
[27] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B, 13 (1976), p. 5188
DOI URL |
[28] |
P. Denteneer, W.V. Haeringen, J. Phys. C. Solid State Phys., 20 (1987), p. L883
DOI URL |
[29] |
Y.H. Jo, K.-Y. Doh, D.G. Kim, K. Lee, D.W. Kim, H. Sung, S.S. Sohn, D. Lee, H.S. Kim, B.-J. Lee, S. Lee, J. Alloys. Compd., 809 (2019), p. 151864
DOI URL |
[30] |
Y.H. Jo, J. Yang, K.Y. Doh, W. An, D.W. Kim, H. Sung, D. Lee, H.S. Kim, S.S. Sohn, S. Lee, J. Alloys. Compd., 844 (2020), p. 156090
DOI URL |
[31] |
B. Yin, F. Maresca, W.A. Curtin, Acta Mater., 188 (2020), pp. 486-491
DOI URL |
[32] |
Y.H. Jo, S. Jung, W.M. Choi, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim, S. Lee, Nat. Commun., 8 (2017), p. 15719
DOI PMID |
[33] |
S.S. Sohn, A.K. Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater., 31 (2019), p. 1807142
DOI URL |
[34] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater., 128 (2017), pp. 292-303
DOI URL |
[35] |
Y.H. Jo, W.M. Choi, D.G. Kim, A. Zargaran, K. Lee, H. Sung, S.S. Sohn, H.S. Kim, B.J. Lee, S. Lee, Mater. Sci. Eng. A, 743 (2019), pp. 665-674
DOI URL |
[36] |
J.H. Kim, Y.S. Na, Met. Mater. Int., 25 (2019), pp. 296-303
DOI URL |
[37] |
J.W. Won, M. Kang, H.J. Kwon, K.R. Lim, S.M. Seo, Y.S. Na, Met. Mater. Int., 24 (2018), pp. 1432-1437
DOI URL |
[38] |
X. Tian, Y. Zhang, Mater. Sci. Eng. A, 516 (2009), pp. 73-77
DOI URL |
[39] |
K. Jeong, J.-E. Jin, Y.-S. Jung, S. Kang, Y.-K. Lee, Acta Mater., 61 (2013), pp. 3399-3410
DOI URL |
[40] |
Y. Chen, S. Zhu, X. Wang, B. Yang, G. Han, L. Qiu, Vacuum, 150 (2018), pp. 84-95
DOI URL |
[41] |
S.S. Nene, M. Frank, K. Liu, R.S. Mishra, B.A. McWilliams, K.C. Cho, Sci. Rep., 8 (2018), p. 9920
DOI URL |
[42] | K. Edalati, Z. Horita, Mater. Sci. Eng. A, 528 (2011), pp. 7154-7523 |
[43] |
Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater., 131 (2017), pp. 323-335
DOI URL |
[44] |
Y.S. Lee, K. Ishikawa, M. Okayasu, Met. Mater. Int., 25 (2019), pp. 705-712
DOI URL |
[45] |
W.J. Kim, K.H. Han, Y.J. Lee, H. Kim, E.K. Lee, Met. Mater. Int., 24 (2018), pp. 720-729
DOI URL |
[46] | H.U. Jeong, N. Park, Mater. Sci. Eng. A (2019), p. 138896 |
[47] |
T. Zhang, L. Xin, F. Wu, R. Zhao, J. Xiang, M. Chen, S. Jiang, Y. Huang, S. Chen, J. Mater. Sci. Technol., 35 (2019), pp. 2331-2335
DOI |
[48] |
R. Wei, K. Zhang, L. Chen, Z. Han, T. Wang, C. Chen, J. Jian, T. Hu, F. Li, J. Mater. Sci. Technol., 57 (2020), pp. 153-158
DOI URL |
[49] |
G.B. Olson, M. Cohen, Metall. Trans. A, 6 (1975), pp. 791-795
DOI URL |
[50] |
J. Li, Q. Fang, B. Liu, Y. Liu, Acta Mater., 147 (2018), pp. 35-41
DOI URL |
[51] |
S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Metall. Mater. Trans., 47 (2016), pp. 49-58
DOI URL |
[52] |
S. Martin, S. Wolf, S. Decker, L. Krueger, U. Martin, Steel Res. Int., 86 (2015), pp. 1187-1196
DOI URL |
[53] |
E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater., 128 (2017), pp. 120-134
DOI URL |
[54] |
D.G. Kim, Y.H. Jo, J. Yang, W.-M. Choi, H.S. Kim, B.-J. Lee, S.S. Sohn, S. Lee, Scr. Mater., 171 (2019), pp. 67-72
DOI URL |
[55] |
P. Sathiyamoorthi, P. Asghari-Rad, J.W. Bae, H.S. Kim, Intermetallics, 113 (2019), p. 106578
DOI URL |
[56] |
W. Fang, R. Chang, X. Zhang, P. Ji, X. Wang, B. Liu, J. Li, X. He, X. Qu, F. Yin, Mater. Sci. Eng. A, 723 (2018), pp. 221-228
DOI URL |
[1] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[2] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[3] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[4] | Seok Gyu Lee, Bohee Kim, Min Cheol Jo, Kyeong-Min Kim, Junghoon Lee, Jinho Bae, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Effects of Cr addition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels [J]. J. Mater. Sci. Technol., 2020, 50(0): 21-30. |
[5] | Kim Jeong Tae, Hong Sung Hwan, Park Jin Man, Jürgen Eckert, Kim Ki Buem. New para-magnetic (CoFeNi)50(CrMo)50-x(CB)x (x = 20, 25, 30) non-equiatomic high entropy metallic glasses with wide supercooled liquid region and excellent mechanical properties [J]. J. Mater. Sci. Technol., 2020, 43(0): 135-143. |
[6] | Y.Z. Tian, S.J. Sun, H.R. Lin, Z.F. Zhang. Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation [J]. J. Mater. Sci. Technol., 2019, 35(3): 334-340. |
[7] | Qiaomu Liu, Shunzhou Huang, Aijie He. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines [J]. J. Mater. Sci. Technol., 2019, 35(12): 2814-2823. |
[8] | Yanli Lu, Fang Liu, Xiang Li, Feng Gao, Zheng Chen. First-Principles Study on the Stability and Electronic Properties of Bi-Doped Sr3Ti2O7 [J]. J. Mater. Sci. Technol., 2018, 34(5): 891-898. |
[9] | Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5 V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34(12): 2507-2514. |
[10] | Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34(12): 2325-2330. |
[11] | Xiaojing Sha, Namin Xiao, Yongjun Guan, Xiaosu Yi. A first-principles investigation on mechanical and metallic properties of titanium carbides under pressure [J]. J. Mater. Sci. Technol., 2018, 34(10): 1953-1958. |
[12] | Bo Jiang, Hongwei Cheng, Longfei Luo, Xionggang Lu, Zhongfu Zhou. Oxygen Permeation and Stability of Ce0.8Gd0.2O2-δ-PrBaCo2-xFexO5+δ Dual-phase Composite Membranes [J]. J. Mater. Sci. Technol., 2014, 30(12): 1174-1180. |
[13] | Ensieh Ganji Babakhani, Jafar Towfighi, Laleh Shirazi, Ali Nakhaeipour, Akbar Zamaniyan, Zahra Shafiei. Structure Stability and Oxygen Permeability of Perovskite-type Oxides of Ba0.5Sr0.5Co0.8Fe0.1R0.1O3-δ (R=Al, Mn, Fe, Ce, Cr, Ni, Co) [J]. J Mater Sci Technol, 2012, 28(2): 177-183. |
[14] | H.S.Kim, T.Y.Ra, I.D.Yeo, H.J.Bang, Y.G.Yoo, W.Y.Kim. Microstructure, Elastic Modulus and Tensile Properties of Ti-Nb-O Alloy System [J]. J Mater Sci Technol, 2008, 24(01): 33-36. |
[15] | Y.H.Zhu, W.B.Lee, S.To. Nanophase Decomposition of a Zn-Al Based Alloy Zn¬68Al¬10Cu¬22 [J]. J Mater Sci Technol, 2004, 20(06): 687-690. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||