J. Mater. Sci. Technol. ›› 2021, Vol. 75: 196-204.DOI: 10.1016/j.jmst.2020.07.049
• Research Article • Previous Articles Next Articles
Muhammad Imran Saleema, Shangyi Yanga,b,*(), Attia Batoolc, Muhammad Sulamana,d, Chandrasekar Perumal Veeramalaia, Yurong Jiangd, Yi Tangd, Yanyan Cuid, Libin Tangb, Bingsuo Zoua
Received:
2020-04-23
Revised:
2020-06-18
Accepted:
2020-07-21
Published:
2020-10-26
Online:
2020-10-26
Contact:
Shangyi Yang
About author:
*Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Center for Micro-Nanotechnology, School of Physics, Key Laboratory of Advanced Optoelectronic Quantum Design and Measurement, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China. E-mail address: syyang@bit.edu.cn (S. Yang).Muhammad Imran Saleem, Shangyi Yang, Attia Batool, Muhammad Sulaman, Chandrasekar Perumal Veeramalai, Yurong Jiang, Yi Tang, Yanyan Cui, Libin Tang, Bingsuo Zou. CsPbI3 nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors[J]. J. Mater. Sci. Technol., 2021, 75: 196-204.
Fig. 1. (a) Absorption spectra of ZnO NPs (in DMSO), CsPbI3 NRs (in n-octane) and PbS QDs (in n-octane). (b) Absorption spectra of bilayer device (ITO/ZnO/PbS QDs) and trilayer device (ITO/ZnO/PbS QDs/CsPbI3), (c) XRD pattern of CsPbI3 NRs film, and the inset show the NRs solution dispersed in n-octane, and (d) XRD pattern of PbS QDs film.
Fig. 2. SEM images of PbS QDs (a) and CsPbI3 NRs films (b-d), the inset of Fig. 2(c) shows its average length and diameter distribution plot; and TEM images of PbS QDs (e-f). The inset of Fig. 2(e) shows its size distribution plot and the inset of Fig. 2(f) shows its HRTEM image.
Fig. 3. (a) Cross-sectional diagram and (b) SEM image of device B, (c-d) I-V curves of devices A and B in dark and under different illuminations, respectively.
Devices | Responsivity | Specific detectivity | External quantum efficiency (EQE) | Rise/decay time* |
---|---|---|---|---|
A | 4.9 A/W | 1.3 × 1013 Jones | 8.8 × 102 | 0.98/0.47 s |
B | 19.72 A/W | 8.0 × 1013 Jones | 3.3 × 103 | 0.68/0.45 s |
C | 18.64 A/W | 5.7 × 1013 Jones | 3.1 × 103 | 0.80/0.37 s |
Table 1 Device performance of devices A, B and C at -1.5 V.
Devices | Responsivity | Specific detectivity | External quantum efficiency (EQE) | Rise/decay time* |
---|---|---|---|---|
A | 4.9 A/W | 1.3 × 1013 Jones | 8.8 × 102 | 0.98/0.47 s |
B | 19.72 A/W | 8.0 × 1013 Jones | 3.3 × 103 | 0.68/0.45 s |
C | 18.64 A/W | 5.7 × 1013 Jones | 3.1 × 103 | 0.80/0.37 s |
Fig. 4. (a-b). Responsivity and specific detectivity under different light intensity for devices A and B. (c-d) The rising/decaying time for devices A and B under 0.2 mW/cm2 white light illumination at -1 V. The onset shows the first-order exponential rise/decay for devices A and B.
Fig. 5. Self-powered mode of devices A and B. (a-b) Photocurrent and responsivity versus light intensity curves for devices A and B at 0 V. (c-d) Current-time curves for devices A and B under 4 mW/cm2 white light illumination at zero bias.
Structure | Light Intensity | Raise/Fall time | R (A/W) | D* (Jones) | Ref. |
---|---|---|---|---|---|
ITO/ZnO/PbS-TBAI/CsPbI3/Au | 0.1 mW/cm2 | 0.54/0.45 s* | 11.12 | 4.5 × 1013 | This Work |
ITO/CdS NRs/CsPbBr3/Au | 85 μW/cm2 (405 nm) | 0.3/0.25s | 0.086 | 6.2 × 1011 | [ |
ITO/SnO2/CsPbBr3/PMAA/PTAA/Au | 0.64 μW/cm2 (473 nm) | 0.4/0.43ms | 0.3 | 1 × 1013 | [ |
ITO/PEDOT:PSS/Perovskite/PCBM/Al | 1 mW/cm2 (550 nm) | 600/600ns | --- | 4.0 × 1014 | [ |
FTO/NiO/MgO/ZnO/Au | 0.2 mW/cm2 (378 nm) | 2.0/26.0ms | 0.07 | 5.84 × 1011 | [ |
FTO/CdS/Perovskite/Spiro-OMeTAD /Ag | 4.57 μW/cm2 (550-750 nm) | 0.54/2.21ms | 0.48 | 2.1 × 1013 | [ |
ITO/SnO2/CsPbBr3/PTAA/Au | 6 × 10-4 W/cm2 (473 nm) | 30/39μs | 0.216 | 7.23 × 1012 | [ |
FTO/TiO2/Ag NWs | 3.18 μW/cm2 (200-400 nm) | 44 ns/1.85μs | 0.032 | 6.0 × 1011 | [ |
Al/Si/SiO2/CH3NH3PbI3/Pt | 5 mW/cm2 (white light) | 25.8/0.62ms | --- | 8.8 × 1010 | [ |
Au/CH3NH3PbI3/Ag | 9 μW/cm2 (520 nm) | 13.8/16.1μs | 0.16 | 1.3 × 1012 | [ |
ITO/SnO2/CsPbI3/Au | 3.82 μW/cm2 (400-600 nm) | 5.7/6.2ms | 0.1 | 1 × 1012 | [ |
Table 2 Key parameters of self-powered photodetectors in this work and previously work.
Structure | Light Intensity | Raise/Fall time | R (A/W) | D* (Jones) | Ref. |
---|---|---|---|---|---|
ITO/ZnO/PbS-TBAI/CsPbI3/Au | 0.1 mW/cm2 | 0.54/0.45 s* | 11.12 | 4.5 × 1013 | This Work |
ITO/CdS NRs/CsPbBr3/Au | 85 μW/cm2 (405 nm) | 0.3/0.25s | 0.086 | 6.2 × 1011 | [ |
ITO/SnO2/CsPbBr3/PMAA/PTAA/Au | 0.64 μW/cm2 (473 nm) | 0.4/0.43ms | 0.3 | 1 × 1013 | [ |
ITO/PEDOT:PSS/Perovskite/PCBM/Al | 1 mW/cm2 (550 nm) | 600/600ns | --- | 4.0 × 1014 | [ |
FTO/NiO/MgO/ZnO/Au | 0.2 mW/cm2 (378 nm) | 2.0/26.0ms | 0.07 | 5.84 × 1011 | [ |
FTO/CdS/Perovskite/Spiro-OMeTAD /Ag | 4.57 μW/cm2 (550-750 nm) | 0.54/2.21ms | 0.48 | 2.1 × 1013 | [ |
ITO/SnO2/CsPbBr3/PTAA/Au | 6 × 10-4 W/cm2 (473 nm) | 30/39μs | 0.216 | 7.23 × 1012 | [ |
FTO/TiO2/Ag NWs | 3.18 μW/cm2 (200-400 nm) | 44 ns/1.85μs | 0.032 | 6.0 × 1011 | [ |
Al/Si/SiO2/CH3NH3PbI3/Pt | 5 mW/cm2 (white light) | 25.8/0.62ms | --- | 8.8 × 1010 | [ |
Au/CH3NH3PbI3/Ag | 9 μW/cm2 (520 nm) | 13.8/16.1μs | 0.16 | 1.3 × 1012 | [ |
ITO/SnO2/CsPbI3/Au | 3.82 μW/cm2 (400-600 nm) | 5.7/6.2ms | 0.1 | 1 × 1012 | [ |
Fig. 6. (a) Gradient energy band diagram of trilayer ZnO/PbS-TBAI/CsPbI3 heterojunction. (b) Electron blocking interface formed at CsPbI3/Au interface, tilting the band upward to facilitate hole-extraction and electron-blocking.
[1] |
Y. Fu, W. Zheng, X. Wang, M.P. Hautzinger, D. Pan, L. Dang, J.C. Wright, A. Pan, S. Jin, J. Am. Chem. Soc. 140 (2018) 15675-15683.
DOI URL |
[2] |
D.A.R. Barkhouse, R. Debnath, I.J. Kramer, D. Zhitomirsky, A.G. Pattantyus-Abraham, L. Levina, L. Etgar, M. Grätzel, E.H. Sargent, Adv. Mater. 23 (2011) 3134-3138.
DOI URL |
[3] |
C. Fan, X. Xu, K. Yang, F. Jiang, S. Wang, Q. Zhang, Adv. Mater. 30 (2018), 1804707.
DOI URL |
[4] |
M.I. Saleem, S.Y. Yang, R.N. Zhi, H.R. Li, M. Sulaman, P.V. Chandrasekar, Z.H. Zhang, A. Batool, B.S. Zou, Nanotechnology 31 (2020), 254001.
DOI URL |
[5] |
J. Xu, O. Voznyy, M. Liu, A.R. Kirmani, G. Walters, R. Munir, M. Abdelsamie, A.H. Proppe, A. Sarkar, F.P. García de Arquer, M. Wei, B. Sun, M. Liu, O. Ouellette, R. Quintero-Bermudez, J. Li, J. Fan, L. Quan, P. Todorovic, H. Tan, S. Hoogland, S.O. Kelley, M. Stefik, A. Amassian, E.H. Sargent, Nat. Nanotechnol. 13 (2018) 456-462.
DOI |
[6] |
X. Zhang, J. Zhang, D. Phuyal, J. Du, L. Tian, V.A. Öberg, M.B. Johansson, U.B. Cappel, O. Karis, J. Liu, H. Rensmo, G. Boschloo, E.M.J. Johansson, Adv. Energy Mater. 8 (2018), 1702049.
DOI URL |
[7] |
J.F. Xu, H.W. Wang, S.Y. Yang, G.Q. Ni, B.S. Zou, J. Alloys. Compd. 764 (2018) 446-451.
DOI URL |
[8] |
M.I. Saleem, S.Y. Yang, M. Sulaman, J.M. Hu, P.V. Chandrasekar, Y.S. Shi, R.N. Zhi, A. Batool, B.S. Zou, Nanotechnology 31 (2020), 165502.
DOI URL |
[9] |
L. Sun, J.J. Choi, D. Stachnik, A.C. Bartnik, B.-R. Hyun, G.G. Malliaras, T. Hanrath, F.W. Wise, Nat. Nanotechnol. 7 (2012) 369-373.
DOI URL |
[10] |
S. Pradhan, F. Di Stasio, Y. Bi, S. Gupta, S. Christodoulou, A. Stavrinadis, G. Konstantatos, Nat. Nanotechnol. 14 (2019) 72-79.
DOI URL |
[11] | M.I. Saleem, S.Y. Yang, R.N. Zhi, M. Sulaman, P.V. Chandrasekar, Y.R. Jiang, Y. Tang, A. Batool, B.S. Zou, Adv. Mater. Interfaces (2020), 2000360. |
[12] |
T. Yang, Y. Zheng, Z. Du, W. Liu, Z. Yang, F. Gao, L. Wang, K.C. Chou, X. Hou, W. Yang, ACS Nano 12 (2018) 1611-1617.
DOI PMID |
[13] |
F. Di Stasio, M. Imran, Q.A. Akkerman, M. Prato, L. Manna, R. Krahne, J. Phys. Chem. Lett. 8 (2017) 2725-2729.
DOI URL |
[14] |
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nano Lett. 15 (2015) 3692-3696.
DOI URL |
[15] |
Y. Meng, C. Lan, F. Li, S. Yip, R. Wei, X. Kang, X. Bu, R. Dong, H. Zhang, J.C. Ho, ACS Nano 13 (2019) 6060-6070.
DOI PMID |
[16] |
H. Zhou, Z. Song, C.R. Grice, C. Chen, J. Zhang, Y. Zhu, R. Liu, H. Wang, Y. Yan, Nano Energy 53 (2018) 880-886.
DOI URL |
[17] |
Y. Bekenstein, B.A. Koscher, S.W. Eaton, P. Yang, A.P. Alivisatos, J. Am. Chem. Soc. 137 (2015) 16008-16011.
DOI URL |
[18] |
D. Yang, Y. Zou, P. Li, Q. Liu, L. Wu, H. Hu, Y. Xu, B. Sun, Q. Zhang, S.T. Lee, Nano Energy 47 (2018) 235-242.
DOI URL |
[19] |
D. Bederak, D.M. Balazs, N.V. Sukharevska, A.G. Shulga, M. Abdu-Aguye, D.N. Dirin, M.V. Kovalenko, M.A. Loi, ACS Appl. Nano Mater 1 (2018) 6882-6889.
DOI PMID |
[20] |
J. Yang, J. Lee, J. Lee, W. Yi, ACS Appl. Mater. Interf. 11 (2019) 33759-33769.
DOI URL |
[21] |
X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 515 (2014) 96.
DOI URL |
[22] |
H.W. Wang, W. Li, Y. Huang, Y.S. Wang, S.Y. Yang, B.S. Zou, Mater. Lett. 187 (2017) 136-139.
DOI URL |
[23] |
M. Peng, Y. Wang, Q. Shen, X. Xie, H. Zheng, W. Ma, Z. Wen, X. Sun, Sci. China Mater 62 (2019) 225-235.
DOI URL |
[24] |
K.M. Sim, A. Swarnkar, A. Nag, D.S. Chung, Laser Photon. Rev. 12 (2018), 1700209.
DOI URL |
[25] |
C. Sae-Kung, B.F. Wright, T.M. Clarke, G.G. Wallace, A.J. Mozer, ACS Appl. Mater. Interfaces 11 (2019) 21030-21041.
DOI URL |
[26] |
K.W. Kemp, A.J. Labelle, S.M. Thon, A.H. Ip, I.J. Kramer, S. Hoogland, E.H. Sargent, Adv. Energy Mater. 3 (2013) 917-922.
DOI URL |
[27] |
T. Pang, R. Jia, Y. Wang, K. Sun, Z. Hu, Y. Zhu, S. Luan, Y. Zhang, Materials 11 (2018) 1606.
DOI URL |
[28] |
Z. Qi, T. Yang, D. Li, H. Li, X. Wang, X. Zhang, F. Li, W. Zheng, P. Fan, X. Zhuang, A. Pan, Mater. Horiz. 6 (2019) 1474-1480.
DOI URL |
[29] |
Z. Zheng, Q. Hu, H. Zhou, P. Luo, A. Nie, H. Zhu, L. Gan, F. Zhuge, Y. Ma, H. Song, T. Zhai, Nanoscale Horiz. 4 (2019) 1372-1379.
DOI |
[30] |
K. Shen, H. Xu, X. Li, J. Guo, S. Sathasivam, M. Wang, A. Ren, K.L. Choy, I.P. Parkin, Z. Guo, J. Wu, Adv. Mater 32 (2020), 2000004.
DOI URL |
[31] |
S.Y. Yang, N. Zhao, L. Zhang, H.Z. Zhong, R.B. Liu, B.S. Zou, Nanotechnology 23 (2012), 255203.
DOI URL |
[32] |
S. Hinds, L. Levina, E.J.D. Klem, G. Konstantatos, V. Sukhovatkin, E.H. Sargent, Adv. Mater. 20 (2008) 4398-4402.
DOI URL |
[33] |
L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, Y. Yang, Nat. Commun. 5 (2014) 5404.
DOI URL |
[34] |
C. Xie, P. You, Z. Liu, L. Li, F. Yan, Light-Sci. Appl. 6 (2017), e17023.
DOI URL |
[35] |
L.-N. Nguyen, W.-H. Chang, C.D. Chen, Y.W. Lan, Nanosc. Horiz. 5 (2020) 82-88.
DOI URL |
[36] |
C. Wei, J. Xu, S. Shi, R. Cao, J. Chen, H. Dong, X. Zhang, S. Yin, L. Li, J. Mater. Chem. C 7 (2019) 9369-9379.
DOI URL |
[37] |
F. Cao, L. Meng, M. Wang, W. Tian, L. Li, Adv. Mater. 31 (2019), 1806725.
DOI URL |
[38] |
H. Zhou, Z. Song, C.R. Grice, C. Chen, X. Yang, H. Wang, Y. Yan, J. Phys. Chem. Lett. 9 (2018) 4714-4719.
DOI PMID |
[39] |
H. Fang, C. Zheng, L. Wu, Y. Li, J. Cai, M. Hu, X. Fang, R. Ma, Q. Wang, H. Wang, Adv. Funct. Mater. 29 (2019), 1809013.
DOI URL |
[40] |
T. Pang, R. Jia, Y. Wang, K. Sun, Z. Hu, Y. Zhu, S. Luan, Y. Zhang, J. Mater. Chem. C 7 (2019) 609-616.
DOI URL |
[41] |
C.-Y. Wu, W. Peng, T. Fang, B. Wang, C. Xie, L. Wang, W.-H. Yang, L.-B. Luo, Adv. Electron. Mater. 5 (2019), 1900135.
DOI URL |
[42] |
U. Bansode, A. Rahman, S. Ogale, J. Mater. Chem. C 7 (2019) 6986-6996.
DOI |
[1] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
[2] | Alexander Tkach, Olena Okhay. Comment on “Hole-pinned defect-dipoles induced colossal permittivity in Bi doped SrTiO3 ceramics with Sr deficiency” [J]. J. Mater. Sci. Technol., 2021, 65(0): 151-153. |
[3] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[4] | Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications [J]. J. Mater. Sci. Technol., 2021, 75(0): 39-47. |
[5] | Fu Zhang, Zhu Ma, Taotao Hu, Rui Liu, Qiaofeng Wu, Yu Yue, Hua Zhang, Zheng Xiao, Meng Zhang, Wenfeng Zhang, Xin Chen, Hua Yu. Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells [J]. J. Mater. Sci. Technol., 2021, 66(0): 150-156. |
[6] | Kyungeun Jung, Du Hyeon Kim, Jaemin Kim, Sunglim Ko, Jae Won Choi, Ki Chul Kim, Sang-Geul Lee, Man-Jong Lee. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 59(0): 195-202. |
[7] | Zhaojun Mo, Qiujie Lu, Zhihong Hao, Zhexuan Zheng, Fu Qiu, Xiao Yang, Zhenyu Li, Lan Li. Effects of 1,9-dibromnonane on the structural, photophysical properties and stability of cesium lead bromide perovskite nanocrystals [J]. J. Mater. Sci. Technol., 2020, 43(0): 84-91. |
[8] | Meigui Xu, Hainan Sun, Wei Wang, Yujuan Shen, Wei Zhou, Jun Wang, Zhi-Gang Chen, Zongping Shao. Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution [J]. J. Mater. Sci. Technol., 2020, 39(0): 22-27. |
[9] | Noh Young Wook, Jin In Su, Park Sang Hyun, Jung Jae Woong. Room-temperature synthesis of ZrSnO4 nanoparticles for electron transport layer in efficient planar hetrojunction perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 42(0): 38-45. |
[10] | Yuchen Liu, Yu Zhou, Dechang Jia, Juanli Zhao, Banghui Wang, Yuanyuan Cui, Qian Li, Bin Liu. Composition dependent intrinsic defect structures in ASnO3 (A = Ca, Sr, Ba) [J]. J. Mater. Sci. Technol., 2020, 42(0): 212-219. |
[11] | Fengli Liang, Ziqiong Yang, Haipeng Deng, Jaka Sunarso, Lili Yang, Junkui Mao. Enhancement of oxygen evolution reaction activity and durability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ by CO2 thermal treatment [J]. J. Mater. Sci. Technol., 2019, 35(6): 1184-1191. |
[12] | Qian-Qian Chu, Bin Ding, Jun Peng, Heping Shen, Xiaolei Li, Yan Liu, Cheng-Xin Li, Chang-Jiu Li, Guan-Jun Yang, Thomas P. White, Kylie R. Catchpole. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering [J]. J. Mater. Sci. Technol., 2019, 35(6): 987-993. |
[13] | Mustafa Haider, Chao Zhen, Tingting Wu, Gang Liu, Hui-Ming Cheng. Boosting efficiency and stability of perovskite solar cells with nickel phthalocyanine as a low-cost hole transporting layer material [J]. J. Mater. Sci. Technol., 2018, 34(9): 1474-1480. |
[14] | Yan Li, Bin Ding, Guan-Jun Yang, Chang-Jiu Li, Cheng-Xin LiState. Achieving the high phase purity of CH3NH3PbI3 film by two-step solution processable crystal engineering [J]. J. Mater. Sci. Technol., 2018, 34(8): 1405-1411. |
[15] | Piaojie Xue, Heng Wu, Yao Lu, Xinhua Zhu. Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: A review [J]. J. Mater. Sci. Technol., 2018, 34(6): 914-930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||