J. Mater. Sci. Technol. ›› 2021, Vol. 75: 205-215.DOI: 10.1016/j.jmst.2020.10.032
• Research Article • Previous Articles Next Articles
D.P. Yang, P.J. Du, D. Wu, H.L. Yi*()
Received:
2020-07-03
Revised:
2020-08-14
Accepted:
2020-08-27
Published:
2020-10-22
Online:
2020-10-22
Contact:
H.L. Yi
About author:
*E-mail address: hlyi@ral.neu.edu.cn (H.L. Yi).D.P. Yang, P.J. Du, D. Wu, H.L. Yi. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process[J]. J. Mater. Sci. Technol., 2021, 75: 205-215.
Fig. 1. (a) Equilibrium phase diagram of the experimental steel; (b) schematic illustration of the thermomechanical process used in the present study. α: ferrite, γ: austenite, θ: cementite.
Fig. 2. (a) SEM micrograph and prior austenite grain boundary of the HR sample; (b) TEM micrograph of the HRA sample; (c) XRD patterns and (d) engineering stress-strain curves of the HR and HRA samples. The inserted image in (b) shows the diffraction pattern of the selected area as circled in white.
Fig. 3. SEM micrographs of the as cold-rolled and simulated continuous annealed samples: (a) 0CR; (b) 0CRA; (c) 20CR; (d) 20CRA; (e) 40CR; (f) 40CRA. RD: rolling direction, ND: the direction normal to the rolling plane.
Fig. 4. XRD patterns of the (a) as cold-rolled and (b) simulated continuous annealed samples; (c) the austenite component in the simulated continuous annealed samples.
Fig. 5. Bright-field TEM micrographs of the simulated continuous annealed samples: (a) 0CRA; (b) 20CRA; (c) 40CRA. The inserted images in (a) and (b) show diffraction patterns of selected areas as circled in white.
Fig. 6. Orientation maps of (a, c, e) austenite and (b, d, f) ferrite in the simulated continuous annealed samples: (a, b) 0CRA; (c, d) 20CRA; (e, f) 40CRA. The black lines represent phase boundary and high-angle boundary (>15°), and blue lines represent low-angle boundary (2°-15°).
Samples | wC,γ | wMn,γ | wSi,γ | wMn,α | wSi,α | dγ | dα | dave |
---|---|---|---|---|---|---|---|---|
0CRA | 0.56 ± 0.03 | 10.2 ± 0.5 | 1.2 ± 0.2 | 3.2 ± 0.3 | 1.7 ± 0.3 | 0.83 | 0.98 | 0.90 |
20CRA | 0.68 ± 0.02 | 11.5 ± 1.2 | 1.2 ± 0.3 | 2.4 ± 0.5 | 1.8 ± 0.3 | 0.37 | 0.46 | 0.42 |
40CRA | 0.60 ± 0.03 | 10.0 ± 1.1 | 1.2 ± 0.3 | 2.8 ± 0.4 | 1.8 ± 0.4 | 0.22 | 0.32 | 0.27 |
Table 1 The compositions and grain sizes of austenite and ferrite in the simulated continuous annealed samples measured by XRD, TEM-EDXS and EBSD. wC,γ (wt%) is the C content in austenite; wMn,γ, wSi,γ, wMn,α and wSi,α (wt%) represent the Mn and Si content in austenite and ferrite; dγ and dα (μm) are the grain sizes of austenite and ferrite, respectively; dave is the weighted average grain size of austenite and ferrite.
Samples | wC,γ | wMn,γ | wSi,γ | wMn,α | wSi,α | dγ | dα | dave |
---|---|---|---|---|---|---|---|---|
0CRA | 0.56 ± 0.03 | 10.2 ± 0.5 | 1.2 ± 0.2 | 3.2 ± 0.3 | 1.7 ± 0.3 | 0.83 | 0.98 | 0.90 |
20CRA | 0.68 ± 0.02 | 11.5 ± 1.2 | 1.2 ± 0.3 | 2.4 ± 0.5 | 1.8 ± 0.3 | 0.37 | 0.46 | 0.42 |
40CRA | 0.60 ± 0.03 | 10.0 ± 1.1 | 1.2 ± 0.3 | 2.8 ± 0.4 | 1.8 ± 0.4 | 0.22 | 0.32 | 0.27 |
Fig. 7. (a) Engineering stress-strain curves and (b) true stress-strain curves and strain hardening rate curves of the simulated continuous annealed samples.
Samples | YS (MPa) | YPE (%) | UTS (MPa) | UEL (%) | TEL (%) |
---|---|---|---|---|---|
0CRA | 751 ± 10 | 0 | 1213 ± 11 | 29.1 ± 0.4 | 31.4 ± 0.5 |
20CRA | 1026 ± 15 | 0 | 1203 ± 8 | 35.0 ± 0.6 | 37.1 ± 0.3 |
40CRA | 1117 ± 13 | 11.9 ± 0.5 | 1353 ± 17 | 29.2 ± 0.5 | 30.1 ± 0.4 |
Table 2 Tensile properties of the simulated continuous annealed samples. YS: yield strength, YPE: yield point elongation, UTS: ultimate tensile strength, UEL: uniform elongation, TEL: total elongation.
Samples | YS (MPa) | YPE (%) | UTS (MPa) | UEL (%) | TEL (%) |
---|---|---|---|---|---|
0CRA | 751 ± 10 | 0 | 1213 ± 11 | 29.1 ± 0.4 | 31.4 ± 0.5 |
20CRA | 1026 ± 15 | 0 | 1203 ± 8 | 35.0 ± 0.6 | 37.1 ± 0.3 |
40CRA | 1117 ± 13 | 11.9 ± 0.5 | 1353 ± 17 | 29.2 ± 0.5 | 30.1 ± 0.4 |
Fig. 8. Schematic illustration of the microstructure evolution of the hot-rolled sample during the simulated batch annealing, cold-rolling, and the simulated continuous annealing.
Fig. 9. (a) The calculated yield strength of austenite and ferrite of the simulated continuous annealed samples; (b) the calculated yield strength of the simulated continuous annealed samples by “rule of mixtures” and the experimental results for comparison.
Fig. 10. (a) The uniform elongation (UEL) of the present medium-Mn steel and a ferritic steel as a function of grain size; (b) The change in austenite volume fraction as a function of true strain in simulated continuous annealed samples; (c) C and Mn contents in austenite and (d) the k value and UEL of the simulated continuous annealed samples as a function of cold-rolled reduction.
[1] |
H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, H. Dong, Acta Mater. 59 (2011) 4002-4014.
DOI URL |
[2] |
O.G. Nimaga, B.B. He, G.J. Cheng, H.W. Yen, M.X. Huang, Int. J. Plast. 123 (2019) 165-177.
DOI URL |
[3] |
Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Acta Mater. 84 (2015) 229-236.
DOI URL |
[4] |
D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 44 (2013) 286-293.
DOI URL |
[5] |
S. Lee, S.J. Lee, B.C. De Cooman, Acta Mater. 59 (2011) 7546-7553.
DOI URL |
[6] |
B. Hu, H. Luo, F. Yang, H. Dong, J. Mater. Sci. Technol. 33 (2017) 1457-1464.
DOI URL |
[7] |
Y. Chang, C.Y. Wang, K.M. Zhao, H. Dong, J.W. Yan, Mater. Des. 94 (2016) 424-432.
DOI URL |
[8] |
J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao, Scr. Mater. 63 (2010) 815-818.
DOI URL |
[9] |
D.W. Suh, S.J. Kim, Scr. Mater. 126 (2017) 63-67.
DOI URL |
[10] |
L. Hao, X. Ji, G. Zhang, W. Zhao, M. Sun, Y. Peng, J. Mater. Sci. Technol. 47 (2020) 122-130.
DOI URL |
[11] |
R.L. Miller, Metall. Trans. B 3 (1972) 905-912.
DOI URL |
[12] |
T. Furukawa, H. Huang, O. Matsumura, Mater. Sci. Technol. 10 (1994) 964-970.
DOI URL |
[13] |
D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, S.J. Kim, Metall. Mater. Trans. A 41 (2010) 397-408.
DOI URL |
[14] |
J. Han, S.J. Lee, J.G. Jung, Y.K. Lee, Acta Mater. 78 (2014) 369-377.
DOI URL |
[15] |
K. Steineder, D. Krizan, R. Schneider, C. Béal, C. Sommitsch, Acta Mater. 139 (2017) 39-50.
DOI URL |
[16] |
S. Yan, X. Liu, T. Liang, Y. Zhao, Mater. Sci. Eng. A 712 (2018) 332-340.
DOI URL |
[17] |
R. Ding, Z. Dai, M. Huang, Z. Yang, C. Zhang, H. Chen, Acta Mater. 147 (2018) 59-69.
DOI URL |
[18] |
J. Han, Y.K. Lee, Acta Mater. 67 (2014) 354-361.
DOI URL |
[19] |
S. Lee, B.C. De Cooman, Metall. Mater. Trans. A 44 (2013) 5018-5024.
DOI URL |
[20] |
P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, D.K. Matlock, Metall. Mater. Trans. A 42 (2011) 3691-3702.
DOI URL |
[21] |
W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, H. Dong, Mater. Sci. Eng. A 528 (2011) 6661-6666.
DOI URL |
[22] |
Q. Han, Y. Zhang, L. Wang, Metall. Mater. Trans. A 46 (2015) 1917-1926.
DOI URL |
[23] |
Y.K. Lee, J. Han, Mater. Sci. Technol. 31 (2015) 843-856.
DOI URL |
[24] |
S. Lee, S.J. Lee, S.S. Kumar, K. Lee, B.C. De Cooman, Metall. Mater. Trans. A 42 (2011) 3638-3651.
DOI URL |
[25] |
J. Ma, H. Liu, Q. Lu, Y. Zhong, L. Wang, Y. Shen, Scr. Mater. 169 (2019) 1-5.
DOI URL |
[26] |
H. Luo, H. Dong, M. Huang, Mater. Des. 83 (2015) 42-48.
DOI URL |
[27] |
J. Han, S.J. Lee, C.Y. Lee, S. Lee, S.Y. Jo, Y.K. Lee, Mater. Sci. Eng. A 633 (2015) 9-16.
DOI URL |
[28] |
Z.C. Li, H. Ding, R.D.K. Misra, Z.H. Cai, Mater. Sci. Eng. A 679 (2017) 230-239.
DOI URL |
[29] |
H. Rietveld, J. Appl. Crystallogr. 2 (1969) 65-71.
DOI URL |
[30] |
N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Acta Mater. 53 (2005) 5439-5447.
DOI URL |
[31] |
N. Nakada, K. Mizutani, T. Tsuchiyama, S. Takaki, Acta Mater. 65 (2014) 251-258.
DOI URL |
[32] |
D.P. Yang, D. Wu, H.L. Yi, Scr. Mater. 161 (2019) 1-5.
DOI URL |
[33] |
H.K.D.H. Bhadeshia, Mater. Sci. Technol. 15 (1999) 22-29.
DOI URL |
[34] |
N. Tsuchida, H. Masuda, Y. Harada, K. Fukaura, Y. Tomota, K. Nagai, Mater. Sci. Eng. A 488 (2008) 446-452.
DOI URL |
[35] |
X.G. Wang, L. Wang, M.X. Huang, Acta Mater. 124 (2017) 17-29.
DOI URL |
[36] |
R. Schwab, V. Ruff, Acta Mater. 61 (2013) 1798-1808.
DOI URL |
[37] |
A.K. Sachdev, Metall. Trans. A 13 (1982) 1793-1797.
DOI URL |
[38] |
S.J. Lee, J. Kim, S.N. Kane, B.C. De Cooman, Acta Mater. 59 (2011) 6809-6819.
DOI URL |
[39] |
B. Sun, N. Vanderesse, F. Fazeli, C. Scott, J. Chen, P. Bocher, M. Jahazi, S. Yue, Scr. Mater. 133 (2017) 9-13.
DOI URL |
[40] |
M. Zhang, H. Chen, Y. Wang, S. Wang, R. Li, S. Li, Y.D. Wang, J. Mater. Sci. Technol. 35 (2019) 1779-1786.
DOI URL |
[41] |
A. Alaei, H. Jafarian, A.R. Eivani, Mater. Sci. Eng. A 676 (2016) 342-350.
DOI URL |
[42] |
H. Shirazi, G. Miyamoto, S.H. Nedjad, T. Chiba, M.N. Ahmadabadi, T. Furuhara, Acta Mater. 144 (2018) 269-280.
DOI URL |
[43] |
Y. Tomota, W. Gong, S. Harjo, T. Shinozaki, Scr. Mater. 133 (2017) 79-82.
DOI URL |
[44] |
T. Shirane, S. Tsukamoto, K. Tsuzaki, Y. Adachi, T. Hanamura, M. Shimizu, F. Abe, Sci. Technol. Weld. Joining 14 (2009) 698-707.
DOI URL |
[45] | L. Liu, Z.G. Yang, C. Zhang, J. Alloys Compd. 577S (2013) S654-S660. |
[46] | S.T. Kimmins, D.J. Gooch, Met. Sci. 17 (1983) 519-532. |
[47] |
N. Nakada, T. Tsuchiyama, S. Takaki, S. Hashizume, ISIJ Int. 47 (2007) 1527-1532.
DOI URL |
[48] |
X. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki, T. Furuhara, Acta Mater. 144 (2018) 601-612.
DOI URL |
[49] |
Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, S. Takaki, ISIJ Int. 53 (2013) 1224-1230.
DOI URL |
[50] |
K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng. A 604 (2014) 135-141.
DOI URL |
[51] |
D.P. Yang, D. Wu, H.L. Yi, Scr. Mater. 174 (2020) 11-13.
DOI URL |
[52] |
E.J. Seo, L. Cho, Y. Estrin, B.C. De Cooman, Acta Mater. 113 (2016) 124-139.
DOI URL |
[53] |
N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, T. Furuhara, Acta Mater. 83 (2015) 383-396.
DOI URL |
[54] |
K.I. Sugimoto, M. Kobayashi, S.I. Hashimoto, Metall. Trans. A 23 (1992) 3085-3091.
DOI URL |
[55] |
Z.H. Cai, H. Ding, X. Xue, J. Jiang, Q.B. Xin, R.D.K. Misra, Scr. Mater. 68 (2013) 865-868.
DOI URL |
[56] |
C. Wang, W. Cao, J. Shi, C. Huang, H. Dong, Mater. Sci. Eng. A 562 (2013) 89-95.
DOI URL |
[57] |
F. HajyAkbary, J. Sietsma, G. Miyamoto, N. Kamikawa, R.H. Petrov, T. Furuhara, M.J. Santofimia, Mater. Sci. Eng. A 677 (2016) 505-514.
DOI URL |
[58] |
S. Ankem, H. Margolin, C.A. Greene, B.W. Neuberger, P.G. Oberson, Prog. Mater. Sci. 51 (2006) 632-709.
DOI URL |
[59] |
O. Bouaziz, Y. Estrin, Y. Bréchet, J.D. Embury, Scr. Mater. 63 (2010) 477-479.
DOI URL |
[1] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[2] | Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 1-9. |
[3] | Luhan Hao, Xiang Ji, Guangqian Zhang, Wei Zhao, Mingyue Sun, Yan Peng. Carbide precipitation behavior and mechanical properties of micro-alloyed medium Mn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 122-130. |
[4] | Fayun Lu, Ping Yang, Li Meng, Fenge Cui, Hua Ding. Influences of Thermal Martensites and Grain Orientations on Strain-induced Martensites in High Manganese TRIP/TWIP Steels [J]. J Mater Sci Technol, 2011, 27(3): 257-265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||