J. Mater. Sci. Technol. ›› 2021, Vol. 75: 216-224.DOI: 10.1016/j.jmst.2020.10.027
• Research Article • Previous Articles Next Articles
Yi Haoa,*,1(), Ran Tianb,1, Kaige Lva, Zhongning Liuc, Jing Nia, Pingyun Yuanb, Yongkang Baib, Xin Chenb,*(
)
Received:
2020-06-26
Revised:
2020-07-29
Accepted:
2020-07-30
Published:
2021-06-10
Online:
2020-10-27
Contact:
Yi Hao,Xin Chen
About author:
*E-mail addresses: haoyi5315@163.com (Y. Hao),1These authors contributed equally to this work.
Yi Hao, Ran Tian, Kaige Lv, Zhongning Liu, Jing Ni, Pingyun Yuan, Yongkang Bai, Xin Chen. Stimuli responsive co-delivery of celecoxib and BMP2 from micro-scaffold for periodontal disease treatment[J]. J. Mater. Sci. Technol., 2021, 75: 216-224.
Fig. 1. Schematic illustration of multilevel structure of PLGA/MSNs-PMS immobilized PLLA spongy nanofibrous micro-scaffold and dual responsive bio- molecules delivery based on this designed complex.
Fig. 2. TEM images of MSN clusters connected by disulfide bond (MSNs-Peptide, a), porous PLGA microspheres containing MSN clusters (PLGA/MSNs-PMS, b) and PLGA/MSNs-PMS immobilized PLLA spongy nanofibrous micro-scaffold (c). (d) Dynamic light scattering (DLS) of thiol functionalized MSNs (MSN-SH), MSNs-Peptide and PLGA/MSNs-PMS.
Fig. 3. Encapsulation of rhodamine-labeled BSA (model growth factor) and coumarin-6 (model drug) in porous PLGA microspheres containing MSN clusters (PLGA/MSNs-PMS, a) and PLGA/MSNs-PMS immobilized PLLA spongy nanofibrous micro-scaffold (b). The figure is presented by representative fluorescence microscope images.
Fig. 4. (a) UV-vis spectrum of the pure rhodamine-labeled BSA, pure coumarin-6/β-CD complex and the mixture of BSA/coumarin-6 in PBS (pH 7.4). (b) The UV-vis absorption spectrum of rhodamine-labeled BSA and coumarin-6/β-CD complex co-loaded micro-scaffold after different treatments.(c) Release kinetics of rhodamine-labeled BSA and coumarin-6/β-CD complex loaded micro-scaffold in PBS. (d) Matrix metallo proteinases (MMP) and glutathione (GSH) multiple-dependent release kinetics of rhodamine-labeled BSA and coumarin-6/β-CD complex loaded micro-scaffold. The figure c and d are represented by the black curve (MMP responsive release of BSA) and red curve (GSH responsive release of coumarin-6).
Fig. 5. The in vitro therapeutic effects of different formulations on inflamed D1 cells (i: Control; ii: LPS; iii: celecoxib (CE) loaded micro-scaffold + LPS; iv: BMP2 loaded micro-scaffold + LPS; v: CE/BMP-2 loaded micro-scaffold + LPS). (a-c) The gene expression of bone related marker ALP, BSP and RUNX2 after treatment by different formulations. (d) The ALP activity of inflamed D1 cells after treatment by different formulations. (e) The formation of mineralized nodules of inflamed D1 cells after treatment by different formulations, which was detected by alizarin red staining.
Fig. 6. The in vitro therapeutic effects of celecoxib/ Bone Morphogenetic protein-2 (CE/BMP-2) loaded micro-scaffold on mouse model of periodontitis, which is determined by Micro CT.
[1] |
B.L. Pihlstrom, Lancet 366 (2005) 1809-1820.
PMID |
[2] |
X. Niu, Z. Liu, J. Hu, K.J. Rambhia, Y. Fan, P.X. Ma, Macromol. Biosci. 16 (2016) 1039-1047.
DOI URL |
[3] |
D.W. Gilroy, T. Lawrence, M. Perretti, A.G. Rossi, Nat. Rev. Drug Discov. 3 (2004) 401-416.
PMID |
[4] |
C.D.H. Alarcon, S. Pennadam, C. Alexander, Chem. Soc. Rev. 34 (2005) 276-285.
DOI URL |
[5] |
H.S. Kim, H.S. Yoo, J. Control. Release 145 (2010) 264-271.
DOI URL |
[6] |
M.A.C. Stuart, W. T.S.Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 9 (2010) 101-113.
DOI URL |
[7] |
X. Chen, Z. Liu, S.G. Parker, X. Zhang, J.J. Gooding, Y. Ru, Y. Liu, Y. Zhou, ACS Appl. Mater. Interfaces 8 (2016) 15857-15863.
DOI URL |
[8] | E. Galliera, L. Tacchini, M.M.C. Romanelli, Clin. Chem. Lab. Med. 53 (2015) 349-355. |
[9] |
X.M. Na, F. Gao, L.Y. Zhang, Z.G. Su, G.H. Ma, ACS Macro Lett. 1 (2012) 697-700.
DOI URL |
[10] | Q. Qian, X. Huang, X. Zhang, Z. Xie, Y. Wang, Angew. Chemie Int. Ed. English 52 (2013) 10625-10629. |
[11] |
T.M. Allen, P.R. Cullis, Science 303 (2004) 1818-1822.
DOI URL |
[12] |
G. von Maltzahn, J.H. Park, K.Y. Lin, N. Singh, C. Schwöppe, R. Mesters, W.E. Berdel, E. Ruoslahti, M.J. Sailor, S.N. Bhatia, Nat. Mater. 10 (2011) 545-552.
DOI URL |
[13] |
M.J. Sailor, J.H. Park, Adv. Mater. 24 (2012) 3779-3802.
DOI URL |
[14] |
J.H. Park, G. von Maltzahn, M.J. Xu, V. Fogal, V.R. Kotamraju, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 981-986.
DOI URL |
[15] |
B.G. Trewyn, I. Slowing, S. Giri, H.T. Chen, V.S.Y. Lin, Acc. Chem. Res. 40 (2007) 846-853.
DOI URL |
[16] |
Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Chem. Soc. Rev. 41 (2012) 2590-2605.
DOI URL |
[17] |
B. Chang, D. Chen, Y. Wang, Y. Chen, Y. Jiao, X. Sha, W. Yang, Chem. Mater. 25 (2013) 574-585.
DOI URL |
[18] |
X. Chen, X. Cheng, A.H. Soeriyadi, S.M. Sagnella, X. Lu, J.A. Scott, S.B. Lowe, M. Kavallaris, J.J. Gooding, Biomater. Sci. 2 (2014) 121-130.
DOI PMID |
[19] |
X. Chen, A.H. Soeriyadi, X. Lu, S.M. Sagnella, M. Kavallaris, J.J. Gooding, Adv. Funct. Mater. 24 (2014) 6999-7006.
DOI URL |
[20] |
X. Chen, Z. Liu, J. Mater. Chem. B Mater. Biol. Med. 4 (2016) 4382-4388.
DOI URL |
[21] |
X. Chen, Z. Liu, Macromol. Rapid Commun. 37 (2016) 1533-1539.
DOI PMID |
[22] |
Z. Liu, X. Chen, X. Zhang, J.J. Gooding, Y. Zhou, Adv. Healthc. Mater. 5 (2016) 1401-1407.
DOI URL |
[23] |
X. Chen, X.Y. Cheng, A.H. Soeriyadi, S.M. Sagnella, X. Lu, J.A. Scott, S.B. Lowe, M. Kavallaris, J.J. Gooding, Biomater. Sci. 2 (2014) 121-130.
DOI PMID |
[24] |
P.L. McCormack, Drugs 71 (2011) 2457-2489.
DOI PMID |
[25] |
G. FitzGerald, Nat. Rev. Drug. Discovery 2 (2003) 879-890.
DOI URL |
[26] |
M. Singh, B. Shirley, K. Bajwa, E. Samara, M. Hora, D. O’Hagan, J. Control. Release 70 (2001) 21-28.
PMID |
[27] |
X.F. Niu, Q.L. Feng, M.B. Wang, X.D. Guo, Q.X. Zheng, J. Control. Release 134 (2009) 111-117.
DOI URL |
[28] |
Z.N. Liu, X. Chen, Z.P. Zhang, X.J. Zhang, L. Saunders, Y.S. Zhou, P.X. Ma, ACS Nano 12 (2018) 9785-9799.
DOI URL |
[29] |
X.H. Liu, P.X. Ma, Biomaterials 31 (2010) 259-269.
DOI URL |
[30] |
S. Chandrasekaran, Y. Sameena, I.V. Enoch, J. Mol. Recognit. 27 (2014) 640-652.
DOI URL |
[31] |
S.Y. Vafaei, R. Dinarvand, M. Esmaeili, R. Mahjub, T. Toliyat, Pharm. Dev. Technol. 20 (2015) 775-781.
DOI PMID |
[32] | M.V. Sidorova, A.S. Molokoedov, A.A. Az’muko, E.V. Kudryavtseva, E. Krause, M.V. Ovchinnikov, Z.D. Bespalova, Russ. J. Bioorg. Chem. 3 (2004) 101-110. |
[33] |
G. Wei, Q. Jin, W.V. Giannobile, P.X. Ma, Biomaterials 28 (2007) 2087-2096.
DOI URL |
[34] |
P.X. Ma, Adv. Drug. Delivery. Rev. 60 (2008) 184-198.
DOI URL |
[35] |
K.M. Woo, V.J. Chen, H.M. Jung, T.I. Kim, H.I. Shin, J.H. Baek, H.M. Ryoo, P.X. Ma, Tissue Eng. Part A 15 (2009) 2155-2162.
DOI URL |
[36] |
A.K. Varkouhi, M. Scholte, G. Storm, H.J. Haisma, J. Control. Release 151 (2001) 220-228.
DOI URL |
[37] |
Q. Sun, M. Radosz, Y. Shen, J. Control. Release 164 (2012) 156-169.
DOI URL |
[38] |
H. Nagase, R. Visse, G. Murphy, Cardiovasc. Res. 69 (2006) 562-573.
DOI URL |
[39] |
Z.B. Zheng, G. Zhu, H. Tak, E. Joseph, J.L. Eiseman, D.J. Creighton, Bioconjugate Chem. 16 (2005) 598-607.
DOI URL |
[40] |
F. Putker, M.P. Bos, J. Tommassen, FEMS Microbiol. Rev. 39 (2015) 985-1002.
DOI URL |
[41] |
M. Prasad, W.T. Butler, C. Qin, Connect. Tissue Res. 51 (2010) 404-417.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||