J. Mater. Sci. Technol. ›› 2021, Vol. 75: 164-173.DOI: 10.1016/j.jmst.2020.10.024
• Research Article • Previous Articles Next Articles
Enkang Haoa,b, Yulong Ana,b,*(), Jie Chenc, Xiaoqin Zhaoa, Guoliang Houa, Jianmin Chena,b, Meizhen Gaod, Fengyuan Yana,b,*(
)
Received:
2020-06-15
Revised:
2020-08-12
Accepted:
2020-08-12
Published:
2020-10-20
Online:
2020-10-20
Contact:
Yulong An,Fengyuan Yan
About author:
fyyan@licp.cas.cn (F. Yan).Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings[J]. J. Mater. Sci. Technol., 2021, 75: 164-173.
Atoms | Site | x | y | z |
---|---|---|---|---|
Fd3m(227); a =b = c = 9.318(5) Å; V = 809.01(7) Å3; Z = 8 | ||||
Ag | .-3m | 0.625 | 0.625 | 0.625 |
Mo | -43m | 0 | 0 | 0 |
O | .3m | 0.36 | 0.36 | 0.36 |
Table 1 Optimized structure for β-Ag2MoO4 cubic spinel [32].
Atoms | Site | x | y | z |
---|---|---|---|---|
Fd3m(227); a =b = c = 9.318(5) Å; V = 809.01(7) Å3; Z = 8 | ||||
Ag | .-3m | 0.625 | 0.625 | 0.625 |
Mo | -43m | 0 | 0 | 0 |
O | .3m | 0.36 | 0.36 | 0.36 |
Composite Powders | Chemical component | Size (μm) | Preparation craft | Content (wt.%) |
---|---|---|---|---|
Ag | 99.99 | ≤60 | gas atomization | 10 |
Mo | ≥99.5 | 30-75 | Agglomerating and sintering | 5 |
NiCoCrAlYTa | Ni-23Co-20Cr-8.5Al-0.6Y-4Ta | 5-38 | gas atomization | 85 |
Table 2 Parameters of the composite powders.
Composite Powders | Chemical component | Size (μm) | Preparation craft | Content (wt.%) |
---|---|---|---|---|
Ag | 99.99 | ≤60 | gas atomization | 10 |
Mo | ≥99.5 | 30-75 | Agglomerating and sintering | 5 |
NiCoCrAlYTa | Ni-23Co-20Cr-8.5Al-0.6Y-4Ta | 5-38 | gas atomization | 85 |
Parameters | Setting |
---|---|
Oxygen flow (m3/h) | 18.5 |
Natural gas flow (m3/h) | 11.3 |
Air flow (m3/h) | 18.7 |
Powder feed rate (g/min) | 25 |
Gun speed (mm/s) | 800 |
Interpass spacing (mm) | 3 |
Spraying distance (cm) | 30 |
Substrate temperature (°C) | <150 |
Table 3 Spraying parameters.
Parameters | Setting |
---|---|
Oxygen flow (m3/h) | 18.5 |
Natural gas flow (m3/h) | 11.3 |
Air flow (m3/h) | 18.7 |
Powder feed rate (g/min) | 25 |
Gun speed (mm/s) | 800 |
Interpass spacing (mm) | 3 |
Spraying distance (cm) | 30 |
Substrate temperature (°C) | <150 |
Fig. 3. SEM image of the as-sprayed surface (a), SEM image and EDS spectra of polished surface (b), SEM image of cross-section (c) and XRD pattern (d) of the composite coating.
Fig. 6. EBSD observational results (IPF and phases maps) of the cross-section of the composite coating after rubbing under different temperatures: 25 °C (a, d), 800 °C (b, e) and 1000 °C (c, f).
Fig. 7. SEM images and EDS mappings of the non-worn surface of composite coating after rubbing under different temperatures: 600 °C (a, b); 800 °C (c, d).
Fig. 8. SEM images (a-c) of the non-worn surface of composite coating after rubbing under 1000 °C; TEM images and EDS mappings (d) of the cross-section of the region marked with red line in image (b); the enlargement of area A (e); HRTEM images of area A (f), area C (h) and area D (i) as well as diffracting pattern of area B (g) in image (d).
Samples | Items | O | Ni | Co | Cr | Al | Y | Ta | Ag | Mo |
---|---|---|---|---|---|---|---|---|---|---|
1 | Weight % | 30.45 | 18.16 | 3.75 | 8.11 | 2.71 | 0.00 | 0.55 | 25.18 | 11.09 |
Atomic % | 65.98 | 10.72 | 2.21 | 5.40 | 3.49 | 0.00 | 0.11 | 8.09 | 4.01 | |
2 | Weight % | 27.59 | 25.70 | 12.39 | 10.08 | 12.21 | 0.03 | 2.29 | 6.72 | 3.01 |
Atomic % | 55.17 | 14.01 | 6.73 | 6.20 | 14.48 | 0.01 | 0.40 | 1.99 | 1.00 |
Table 4 EDS data in Fig. 8(b) and (c).
Samples | Items | O | Ni | Co | Cr | Al | Y | Ta | Ag | Mo |
---|---|---|---|---|---|---|---|---|---|---|
1 | Weight % | 30.45 | 18.16 | 3.75 | 8.11 | 2.71 | 0.00 | 0.55 | 25.18 | 11.09 |
Atomic % | 65.98 | 10.72 | 2.21 | 5.40 | 3.49 | 0.00 | 0.11 | 8.09 | 4.01 | |
2 | Weight % | 27.59 | 25.70 | 12.39 | 10.08 | 12.21 | 0.03 | 2.29 | 6.72 | 3.01 |
Atomic % | 55.17 | 14.01 | 6.73 | 6.20 | 14.48 | 0.01 | 0.40 | 1.99 | 1.00 |
Fig. 11. Raman spectra (a) of the worn surface of composite coating after sliding under different temperatures and Raman mappings (b) of the regions blocked with yellow dotted line in Fig. 10.
Fig. 12. TEM image (a), HRSEM and EDS mappings (b), HRTEM image (c) and diffracting pattern (d) of area A, HRTEM images of area B (e), area C (f) of the cross-section of worn track of the composite coating after rubbing under 800 °C.
[1] |
J. Cruz, T. Botelho, I. Caron, A. Durand, D. Messager, Tribol. Int. 100 (2016) 430-440.
DOI URL |
[2] |
X. Zhang, J. Cheng, M. Niu, H. Tan, W. Liu, J. Yang, Tribol. Int. 101 (2016) 81-87.
DOI URL |
[3] |
Z. Li, J. Wang, J. Lu, J. Meng, Appl. Surf. Sci. 264 (2013) 516-521.
DOI URL |
[4] |
Y. Ma, X. Zhao, M. Gao, K. Liu, J. Mater. Sci. Technol. 27 (9) (2011) 841-845.
DOI URL |
[5] |
X. Shi, W. Zhai, Z. Xu, M. Wang, J. Yao, S. Song, Y. Wang, Mater. Des. 55 (2014) 93-103.
DOI URL |
[6] |
X. Shi, S. Song, W. Zhai, M. Wang, Z. Xu, J. Yao, A. Din, Q. Zhang, Mater. Des. 55 (2014) 75-84.
DOI URL |
[7] |
T. Aizawa, A. Mitsuo, S. Yamamoto, T. Sumitomo, S. Muraishi, Wear 259 (2005) 708-718.
DOI URL |
[8] |
S. Arora, N. Kumari, C. Srivastava, J. Alloys. Compd. 801 (2019) 449-459.
DOI URL |
[9] |
S. Arora, C. Srivastava, Thin Solid Films 677 (2019) 45-54.
DOI URL |
[10] |
J. Pei, Y. Li, C. Li, Z. Wang, Y. Liu, H. Li, J. Mater. Sci. Technol. 52 (2020) 162-171.
DOI URL |
[11] |
S. Zhu, Q. Bi, M. Niu, J. Yang, W. Liu, Wear 274-275 (2012) 423-434.
DOI URL |
[12] | J. Lv, J. Mater, Sci. Technol. 34 (2018) 1685-1691. |
[13] |
G. Meng, H. Liu, M. Liu, T. Xu, G. Yang, C. Li, C. Li, Surf. Coat. Technol. 368 (2019) 192-201.
DOI URL |
[14] |
Y. Chen, X. Zhao, P. Xiao, Corros. Sci. 163 (2020), 108256.
DOI URL |
[15] |
E. Hao, X. Zhao, Y. An, W. Deng, H. Zhou, J. Chen, Appl. Surf. Sci. 489 (2019) 187-197.
DOI URL |
[16] |
G. Hou, Y. An, X. Zhao, H. Zhou, J. Chen, Acta Mater. 95 (2015) 164-175.
DOI URL |
[17] |
D. Shtansky, A. Bondarev, P. Korneev, T. Rojas, V. Godinho, A. Fernández, Appl. Surf. Sci. 273 (2013) 408-414.
DOI URL |
[18] |
H. Gao, A. Roza, J. Gu, D. Stone, S. Aouadi, E. Johnson, A. Martini, ACS Appl. Mater. Interfaces 7 (2015) 15422-15429.
DOI URL |
[19] |
X. Feng, C. Lu, J. Jia, J. Xue, Q. Wang, Y. Sun, W. Wang, G. Yi, Tribol. Int. 141 (2020), 105898.
DOI URL |
[20] |
T. Cavoué, A. Caravaca, I. Kalaitzidou, F. Gaillard, M. Rieu, J. Viricelle, P. Vernoux, Electrochem. commun. 105 (2019), 106495.
DOI URL |
[21] |
P. Jing, Y. Gong, Q. Deng, Y. Zhang, N. Huang, Y. Leng, Vacuum 173 (2020), 109125.
DOI URL |
[22] |
L. Wang, P. Gong, W. Li, T. Luo, B. Cao, Tribol. Int. 146 (2020), 106228.
DOI URL |
[23] |
S. Aouadi, Y. Paudel, W. Simonson, Q. Ge, P. Kohli, C. Muratore, A. Voevodin, Surf. Coat. Technol. 203 (2009) 1304-1309.
DOI URL |
[24] |
J. Jin, J. Sun, G. Wang, Int. J. Refract. Met. Hard Mater. 81 (2019) 233-241.
DOI URL |
[25] |
N. Wasekar, S. Verulkar, M. Vamsi, G. Sundararajan, Surf. Coat. Technol. 370 (2019) 298-310.
DOI URL |
[26] |
A. Beltrán, L. Gracia, E. Longo, J. Andrés, J. Phys. Chem. C 118 (2014) 3724-3732.
DOI URL |
[27] |
A. Gouveia, J. Sczancoski, M. Ferrer, A. Lima, M. Santos, M. Li, R. Santos, E. Longo, L. Cavalcante, Inorg. Chem. 53 (2014) 5589-5599.
DOI PMID |
[28] |
J. Li, F. Liu, Y. Li, New J. Chem. 42 (2018) 12054-12061.
DOI URL |
[29] |
J. Chen, Y. An, J. Yang, X. Zhao, F. Yan, H. Zhou, J. Chen, Surf. Coat. Technol. 235 (2013) 521-528.
DOI URL |
[30] |
B. Zied, T. Ali, Appl. Surf. Sci. 457 (2018) 1126-1135.
DOI URL |
[31] |
R. Goti, M. Francoual, E. Hourcastagné, B. Viguier, F. Crabos, Oxid. Met. 81 (1-2) (2013) 105-113.
DOI URL |
[32] |
J. Pereira, J. Zambrano, M. Licausi, M. Tobar, V. Amigó, Wear 330-331 (2015) 280-287.
DOI URL |
[33] |
G. Jin, Z. Cai, Y. Guan, X. Cui, Z. Liu, Y. Li, M. Dong, D. Zhang, Appl. Surf. Sci. 445 (2018) 113-122.
DOI URL |
[34] |
N. Tsendzughul, A. Ogwu, ACS Omega 4 (2019) 16847-16859.
DOI PMID |
[35] |
W. Gulbinski, T. Suszko, Wear 261 (2006) 867-873.
DOI URL |
[36] |
G. Kustova, Y. Chesalov, L. Plyasova, I. Molinɑ, A. Nizovskii, Vib. Spectrosc. 55 (2011) 235-240.
DOI URL |
[1] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[2] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[3] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[4] | panelJianwei Xu, Weidong Zeng, Dadi Zhou, Wei Chen, Shengtong He, Xiaoyong Zhang. Analysis of crystallographic orientation and morphology of microstructure during hot working for an alpha/beta titanium alloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 1-13. |
[5] | Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 47(0): 177-189. |
[6] | Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 1-9. |
[7] | XianCao Ping, ZhangShuang Liu, Xue-Lin Lei, Run-Zi Wang, Xian-Cheng Zhang, Shan-Tung Tu. A novel hole cold-expansion method and its effect on surface integrity of nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 129-137. |
[8] | XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 241-253. |
[9] | Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 59-69. |
[10] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
[11] | Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment [J]. J. Mater. Sci. Technol., 2020, 43(0): 208-219. |
[12] | Zhixin Zhang, Jiangkun Fan, Bin Tang, Hongchao Kou, Jian Wang, Xin Wang, Shiying Wang, Qingjiang Wang, Zhiyong Chen, Jinshan Li. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 49(0): 56-69. |
[13] | Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39(0): 56-73. |
[14] | Hao Yu, Wei Xu, Sybrand van der Zwaag. Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 45(0): 207-214. |
[15] | Chengyang Jiang, Lingyi Qian, Min Feng, He Liu, Zebin Bao, Minghui Chen, Shenglong Zhu, Fuhui Wang. Benefits of Zr addition to oxidation resistance of a single-phase (Ni,Pt)Al coating at 1373 K [J]. J. Mater. Sci. Technol., 2019, 35(7): 1334-1344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||