J. Mater. Sci. Technol. ›› 2021, Vol. 72: 180-188.DOI: 10.1016/j.jmst.2020.09.023
• Research Article • Previous Articles Next Articles
Xiao Zhanga,b, Pei Wanga,b,*(), Dianzhong Lia,b,*(
), Yiyi Lia,b
Received:
2020-07-20
Revised:
2020-09-08
Accepted:
2020-09-10
Published:
2021-05-10
Online:
2021-05-10
Contact:
Pei Wang,Dianzhong Li
About author:
dzli@imr.ac.cn (D. Li).Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel[J]. J. Mater. Sci. Technol., 2021, 72: 180-188.
Cr | Ni | Mo | Mn | Si | N | C |
---|---|---|---|---|---|---|
22.33 | 5.15 | 3.21 | 1.49 | 0.68 | 0.17 | 0.035 |
Table 1 Chemical composition of the investigated 2205 DSS in wt% with Fe balanced.
Cr | Ni | Mo | Mn | Si | N | C |
---|---|---|---|---|---|---|
22.33 | 5.15 | 3.21 | 1.49 | 0.68 | 0.17 | 0.035 |
Fig. 2. Microstructure of the (a) heat-treated sample in which the austenite (γ) exhibits a white tone and ferrite (α) exhibits a brown tone and (b) microstructure coated with white colloidal silica particles in which the austenite (γ) exhibits a bright tone and the ferrite (α) exhibits a dark tone.
Fig. 4. Lattice strains of the (311) plane of austenite (γ) and the (211) plane of ferrite (α) as a function of the applied stress, where the different fonts of lines represent the tendency of the lattice strain.
Fig. 5. In-situ μ-DIC analyses of the strain in austenite (γ) and ferrite (α) in the sample in conditions of (a) undeformed stage, (b) the yielding of austenite, (c) the yielding of ferrite, and (d) both of the constituent phases undergo a certain amount of plastic deformation. The detail of strain evolution from (b) to (d) with red and white points, respectively, of the (e) red points numbered 1to 10, and (f) white points numbered 18 to 38 in.(a). The dotted lines in (e) and (f) correspond to the phase boundaries.
Fig. 6. Phase maps corresponding to the (b) undeformed sample, and the (c) to (e) microstructures in different red box areas on (a) a fractured sample, where austenite (γ) is shown as red color and the ferrite (α) is shown as green color; the (f) to (i) IPF maps, the (j) to (m) local misorientation maps, and the (n) to (q) GND density maps corresponding to the microstructures in the phase maps (b) to (e).
Fig. 7. Histogram of the local misorientation angle corresponding to the microstructures in the local misorientation maps of (a) Fig. 6j, (b) Fig. 6k, (c) Fig. 6l, and (d) Fig 6m.
Fig. 8. Typical microstructures of the samples under (a, b) 0.5 %, (c, d) 5%, and (e, f) 10 % strain observed based on the TEM bright field with the corresponding diffraction spectra on the corner of the figures.
Fig. 10. TEM bright field image under the 200 two-beam condition of an austenite grain under a strain of 0.5 % with the diffraction pattern on the corner of the figure, denoting the piling up and the different activated slip plans of dislocations.
[1] |
I. Weibull, Mater. Des. 8 (1) (1987) 35-40.
DOI URL |
[2] |
M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59 (2) (2011) 658-670.
DOI URL |
[3] |
P. Wang, N. Xiao, S. Lu, D. Li, Y. Li, Mater. Sci. Eng. A 586 (2013) 292-300.
DOI URL |
[4] |
T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad, Mater. Sci. Eng. A 325 (1) (2002) 112-125.
DOI URL |
[5] | M.F. Ashby, Philos. Mag. 21 (170) (1970) 399-424. |
[6] |
C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, Y.Z. Tian, Z.F. Zhang, Acta Mater. 145 (2018) 413-428.
DOI URL |
[7] |
T. Zhang, L. Xin, F. Wu, R. Zhao, J. Xiang, M. Chen, S. Jiang, Y. Huang, S. Chen, J. Mater. Sci. Technol. 35 (10) (2019) 2331-2335.
DOI |
[8] |
T.O. Erinosho, D.M. Collins, A.J. Wilkinson, R.I. Todd, F.P.E. Dunne, Int. J. Plasticity. 83 (2016) 1-18.
DOI URL |
[9] |
S. Zhang, P. Wang, D. Li, Y. Li, Mater. Sci. Eng. A 635 (2015) 129-132.
DOI URL |
[10] |
P.J. Gibbs, B.C. De Cooman, D.W. Brown, B. Clausen, J.G. Schroth, M.J. Merwin, D. K. Matlock, Mater. Sci. Eng. A 609 (2014) 323-333.
DOI URL |
[11] |
O. Muránsky, P. Šittner, J. Zrník, E.C. Oliver, Acta Mater. 56 (14) (2008) 3367-3379.
DOI URL |
[12] | S.-i. Karato, Phys. Rev. B 79 (21) (2009). |
[13] |
M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, D.C. Dunand, Acta Mater. 55 (6) (2007) 1999-2011.
DOI URL |
[14] |
A. Baczmanski, Y. Zhao, E. Gadalinska, L. Le Joncour, S. Wronski, C. Braham, B. Panicaud, M. Franc¸ ois, T. Buslaps, K. Soloducha, Int. J. Plasticity 81 (2016) 102-122.
DOI URL |
[15] |
N. Tsuchida, T. Kawahata, E. Ishimaru, A. Takahashi, H. Suzuki, T. Shobu, ISIJ Int. 53 (7) (2013) 1260-1267.
DOI URL |
[16] |
A. Baczmanski, C. Braham, Acta Mater. 52 (5) (2004) 1133-1142.
DOI URL |
[17] |
A. Baczmanski, L. Le Joncour, B. Panicaud, M. Francois, C. Braham, A.M. Paradowska, S. Wronski, S. Amara, R. Chiron, J. Appl. Crystallogr. 44 (5) (2011) 966-982.
DOI URL |
[18] |
P. Hedström, T.-S. Han, U. Lienert, J. Almer, M. Odén, Acta Mater. 58 (2) (2010) 734-744.
DOI URL |
[19] |
C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, D. Raabe, Int. J. Plasticity 63 (2014) 198-210.
DOI URL |
[20] |
N. Fujita, N. Ishikawa, F. Roters, C.C. Tasan, D. Raabe, Int. J. Plasticity. 104 (2018) 39-53.
DOI URL |
[21] |
J.Y. Choi, J.H. Ji, S.W. Hwang, K.-T. Park, Mater. Sci. Eng. A 535 (2012) 32-39.
DOI URL |
[22] |
L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, C.C. Tasan, Acta Mater. 121 (2016) 202-214.
DOI URL |
[23] |
A. El Bartali, P. Evrard, V. Aubin, S. Herenú, I. Alvarez-Armas, A.F. Armas, S. Degallaix-Moreuil, Procedia Eng. 2 (1) (2010) 2229-2237.
DOI URL |
[24] |
R. Lillbacka, G. Chai, M. Ekh, P. Liu, E. Johnson, K. Runesson, Acta Mater. 55 (16) (2007) 5359-5368.
DOI URL |
[25] |
W.-N. Hsu, E. Polatidis, M. Šmíd, N. Casati, S. Van Petegem, H. Van Swygenhoven, Acta Mater. 144 (2018) 874-883.
DOI URL |
[1] | Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66(0): 177-185. |
[2] | Yanke Liu, Yulong Cai, Chenggang Tian, Guoliang Zhang, Guoming Han, Shihua Fu, Chuanyong Cui, Qingchuan Zhang. Experimental investigation of a Portevin-Le Chatelier band in Ni‒Co-based superalloys in relation to γʹ precipitates at 500 ℃ [J]. J. Mater. Sci. Technol., 2020, 49(0): 35-41. |
[3] | Dan Liu, Ru Jia, Dake Xu, Hongying Yang, Ying Zhao, M. saleem Khan, Songtao Huang, Jiankang Wen, Ke Yang, Tingyue Gu. Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti [J]. J. Mater. Sci. Technol., 2019, 35(11): 2494-2502. |
[4] | Xuequn Cheng, Yi Wang, Xiaogang Li, Chaofang Dong. Interaction between austein-ferrite phases on passive performance of 2205 duplex stainless steel [J]. J. Mater. Sci. Technol., 2018, 34(11): 2140-2148. |
[5] | Ming Wang, Ting Xu, Yanli Zhu, Wenhong Yin, Hong Guo, Ertuan Zhao, Xiaoying Fang, Weiguo Wang. Evolution of interface character distribution in duplex stainless steel processed by cross-rolling and annealing [J]. J. Mater. Sci. Technol., 2018, 34(11): 2160-2166. |
[6] | Li Ping, Zhao Yang, Liu Yuzhi, Zhao Ying, Xu Dake, Yang Chunguang, Zhang Tao, Gu Tingyue, Yang Ke. Effect of Cu Addition to 2205 Duplex Stainless Steel on the Resistance against Pitting Corrosion by the Pseudomonas aeruginosa Biofilm [J]. J. Mater. Sci. Technol., 2017, 33(7): 723-733. |
[7] | Cai Yulong, Yang Suli, Fu Shihua, Zhang Di, Zhang Qingchuan. Investigation of Portevin-Le Chatelier Band Strain and Elastic Shrinkage in Al-Based Alloys Associated with Mg Contents [J]. J. Mater. Sci. Technol., 2017, 33(6): 580-586. |
[8] | Aboulfazl Moteshakker, Iman Danaee. Microstructure and Corrosion Resistance of Dissimilar Weld-Joints between Duplex Stainless Steel 2205 and Austenitic Stainless Steel 316L [J]. J. Mater. Sci. Technol., 2016, 32(3): 282-290. |
[9] | H.C. Wu, B. Yang, Y.Z. Shi, Q. Gao, Y.Q. Wang. Crack Initiation Mechanism of Z3CN20.09M Duplex Stainless Steel during Corrosion Fatigue in Water and Air at 290?°C [J]. J. Mater. Sci. Technol., 2015, 31(11): 1144-1150. |
[10] | Yiming Jiang, Tao Sun, Jin Li, Jie Xu. Evaluation of Pitting Behavior on Solution Treated Duplex Stainless Steel UNS S31803 [J]. J. Mater. Sci. Technol., 2014, 30(2): 179-183. |
[11] | Shaily M. Bhola, Sukumar Kundu, Rahul Bhola, Brajendra Mishra, Subrata Chatterjee. Electrochemical Study of Diffusion Bonded Joints between Micro-duplex Stainless Steel and Ti6Al4V Alloy [J]. J. Mater. Sci. Technol., 2014, 30(2): 163-171. |
[12] | Juliang Xu, Tao Sun, Lihua Zhang, Jin Li, Yiming Jiang. Potentiostatic Electrochemical Noise Analysis of 2101 Lean Duplex Stainless Steel in 1 mol/L NaCl [J]. J Mater Sci Technol, 2012, 28(5): 474-480. |
[13] | Omyma Hassan Ibrahim Ibrahim Soliman Ibrahim Tarek Ahmed Fouad Khalifa. Effect of Aging on the Toughness of Austenitic and Duplex Stainless Steel Weldments [J]. J Mater Sci Technol, 2010, 26(9): 810-816. |
[14] | A. Momeni K. Dehghani. Effect of Hot Working on Secondary Phase Formation in 2205 Duplex Stainless Steel [J]. J Mater Sci Technol, 2010, 26(9): 851-857. |
[15] | H. Keshmiri,A. Momeni,K. Dehghani,G.R. Ebrahimi,G. Heidari. Effect of Aging Time and Temperature on Mechanical Properties and Microstructural Evolution of 2205 Ferritic-Austenitic Stainless Steel [J]. J Mater Sci Technol, 2009, 25(05): 597-602. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||