J. Mater. Sci. Technol. ›› 2021, Vol. 72: 189-196.DOI: 10.1016/j.jmst.2020.09.015
• Research Article • Previous Articles Next Articles
Chao Xiea, Xingtong Lua, Yi Lianga, Huahan Chena, Li Wanga, Chunyan Wua, Di Wub, Wenhua Yanga, Linbao Luoa,*()
Received:
2020-05-29
Revised:
2020-07-03
Accepted:
2020-07-12
Published:
2021-05-10
Online:
2021-05-10
Contact:
Linbao Luo
About author:
* E-mail address: luolb@hfut.edu.cn (L. Luo).Chao Xie, Xingtong Lu, Yi Liang, Huahan Chen, Li Wang, Chunyan Wu, Di Wu, Wenhua Yang, Linbao Luo. Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application[J]. J. Mater. Sci. Technol., 2021, 72: 189-196.
Fig. 2. FESEM images of the β-Ga2O3 thin films with the patterns of (a) periodic square array, (b) periodic round array, (c) periodic triangle array, (d) continuous 4 and 6 μm stripes and (e) “HFUT” characters. Inset in (b) shows an enlarged FESEM image of the β-Ga2O3 thin film.
Fig. 3. (a) EDS spectrum and chemical composition of both gallium and oxygen atoms, (b) XRD pattern and (c) absorption spectrum of the β-Ga2O3 thin film, the inset in (c) shows the plot of (αhν)2-hν for deducing the optical bandgap of the β-Ga2O3 thin film. (d) FESEM image of a typical β-Ga2O3 thin film-based photodetector with a MSM geometry. The elemental mapping showing the distribution of (e) Au and (f) Ga elements.
Fig. 4. (a) I-V curves of the β-Ga2O3 thin film-based photodetector in dark and under 265 nm illumination (0.952 mW cm-2). The background is a FESEM image of the photodetectors array. (b) Time-dependent photoresponse of the device under 265 nm illumination. (c) I-V curves and (d) time-dependent photoresponse of the device under 265 nm illumination with different light intensities. (e) Photocurrent and (f) responsivity and EQE of the device as functions of light intensity.
Method | Dark current (A) | Ilight/Idark ratio | Responsivity (A W-1) | D* (Jones) | τr/τd (s) | Ref. |
---|---|---|---|---|---|---|
PLD | 1.88 × 10-7 | ~10 | 7.1 (10 V) | - | - | [ |
magnetron sputtering | 7.63 × 10-9 | 1.08 × 103 | 2.6 (10 V) | 1.6 × 1012 | 0.26/1 | [ |
magnetron sputtering | 1.0 × 10-11 | ~105 | 0.89 (10 V) | - | 0.3/0.25 | [ |
PECVDa | 4.0 × 10-10 | 37 | 2.0 × 10-4 (0 V) | 6.9 × 109 | - | [ |
PECVD | 4.0 × 10-10 | ~105 | 1.2 (10 V) | 1.9 × 1012 | - | [ |
OFZb | 2.3 × 10-10 | ~102 | 4 (40 V) | - | 0.3/0.2 | [ |
Thermal-assisted conversion | 6.2 × 10-13 | 6.13 × 104 | 0.72 (10 V) | 4.18 × 1011 | 1.1/0.03 | This work |
Table 1 Comparison of some key performance parameters of our device and β-Ga2O3 thin film-based DUV photodetectors in literatures.
Method | Dark current (A) | Ilight/Idark ratio | Responsivity (A W-1) | D* (Jones) | τr/τd (s) | Ref. |
---|---|---|---|---|---|---|
PLD | 1.88 × 10-7 | ~10 | 7.1 (10 V) | - | - | [ |
magnetron sputtering | 7.63 × 10-9 | 1.08 × 103 | 2.6 (10 V) | 1.6 × 1012 | 0.26/1 | [ |
magnetron sputtering | 1.0 × 10-11 | ~105 | 0.89 (10 V) | - | 0.3/0.25 | [ |
PECVDa | 4.0 × 10-10 | 37 | 2.0 × 10-4 (0 V) | 6.9 × 109 | - | [ |
PECVD | 4.0 × 10-10 | ~105 | 1.2 (10 V) | 1.9 × 1012 | - | [ |
OFZb | 2.3 × 10-10 | ~102 | 4 (40 V) | - | 0.3/0.2 | [ |
Thermal-assisted conversion | 6.2 × 10-13 | 6.13 × 104 | 0.72 (10 V) | 4.18 × 1011 | 1.1/0.03 | This work |
Fig. 5. (a) Responsivity and EQE of the device as functions of operational bias voltage. (b) Spectral responsivity of the device in the wavelength region of 200-600 nm. (c) An enlarged photoresponse curve shows the rise (τr) and decay times (τd). (d) Time-dependent photoresponse of the device over 1000 cycles of operation (265 nm, 0.952 mW cm-2).
Fig. 6. 2D current contrast maps showing the channel currents of all the 8 × 8 devices (a) in dark and (b) upon 265 nm light illumination (0.25 μW cm-2). (c) Channel current in dark and under 265 nm light irradiation for each device unit, the dash lines represent the average values for dark current (black) and photocurrent (red). (d) 3D diagram of the Ilight/Idark ratio for each device unit.
Fig. 7. (a) Schematic illustration of the setup for DUV light imaging. (b) The 2D current contrast map of the photodetectors array under 265 nm light illumination, showing the DUV light imaging function.
[1] |
H. Chen, K. Liu, L. Hu, A.A. Al-Ghamdi, X. Fang, Mater. Today 18 (2015) 493-502.
DOI URL |
[2] |
C. Xie, X.T. Lu, X.W. Tong, Z.X. Zhang, F.X. Liang, L. Liang, L.B. Luo, Y.C. Wu, Adv. Funct. Mater. 29 (2019), 1806006.
DOI URL |
[3] |
L. Sang, M. Liao, M. Sumiya, Sensors 13 (2013) 10482-10518.
DOI URL |
[4] |
E. Monroy, F. Omnes, F. Calle, Semicond. Sci. Technol. 18 (2003) R33-R51.
DOI URL |
[5] |
Y.J. Lu, C.N. Lin, C.X. Shan, Adv. Opt. Mater. 6 (2018), 1800359.
DOI URL |
[6] |
J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M. S. Islam, P.W. Juodawlkis, M.A. Khan, A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C.N. Pilawa-Podgurski, J.B. Shealy, Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback, J.A. Simmons, Adv. Electron. Mater. 4 (2018), 1600501.
DOI URL |
[7] |
S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, Appl. Phys. Rev. 5 (2018) 11301.
DOI URL |
[8] | D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, W. Tang, Mater. Today Phys. 11 (2019), 100157. |
[9] | T.C. Wei, D.S. Tsai, P. Ravadgar, J.J. Ke, M.L. Tsai, D.H. Lien, C.Y. Huang, R.H. Horng, J.H. He, IEEE J. Sel. Top. Quantum Electron. 20 (2014) 112-117. |
[10] |
J. Kim, S. Oh, M.A. Mastro, J. Kim, Phys. Chem. Chem. Phys. 18 (2016) 15760-15764.
DOI URL |
[11] |
X. Chen, F. Ren, S. Gu, J. Ye, Photonics Res. 7 (2019) 381.
DOI URL |
[12] |
W.Y. Kong, G.A. Wu, K.Y. Wang, T.F. Zhang, Y.F. Zou, D.D. Wang, L.B. Luo, Adv. Mater. 28 (2016) 10725-10731.
DOI URL |
[13] |
D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, W. Tang, Opt. Mater. Express 4 (2014) 1067.
DOI URL |
[14] |
G.C. Hu, C.X. Shan, N. Zhang, M.M. Jiang, S.P. Wang, D.Z. Shen, Opt. Express 23 (2015) 13554.
DOI PMID |
[15] |
Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, J.J. Delaunay, Adv. Funct. Mater. 20 (2010) 3972-3978.
DOI URL |
[16] |
C. Xie, X. Lu, M. Ma, X. Tong, Z. Zhang, L. Wang, C. Wu, W. Yang, L. Luo, Adv. Opt. Mater. 7 (2019), 1901257.
DOI URL |
[17] |
Y. Qin, S. Long, H. Dong, Q. He, G. Jian, Y. Zhang, X. Hou, P. Tan, Z. Zhang, H. Lv, Q. Liu, M. Liu, Chin. Phys. B 28 (2019) 18501.
DOI URL |
[18] |
D.Y. Guo, Z.P. Wu, Y.H. An, X.C. Guo, X.L. Chu, C.L. Sun, L.H. Li, P.G. Li, W.H. Tang, Appl. Phys. Lett. 105 (2014) 23507.
DOI URL |
[19] |
X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, D. Shen, ACS Appl. Mater. Interfaces 8 (2016) 4185-4191.
DOI URL |
[20] |
Y. Chen, Y. Lu, C. Lin, Y. Tian, C. Gao, L. Dong, C. Shan, J. Mater. Chem. C 6 (2018) 5727-5732.
DOI URL |
[21] |
D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, W. Tang, ACS Appl. Mater. Interfaces 9 (2017) 1619-1628.
DOI URL |
[22] |
B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, X. Fang, Adv. Funct. Mater. 27 (2017), 1700264.
DOI URL |
[23] |
B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao, Nano Lett. 15 (2015) 3988-3993.
DOI URL |
[24] |
Y. Peng, Y. Zhang, Z. Chen, D. Guo, X. Zhang, P. Li, Z. Wu, W. Tang, IEEE Photon. Technol. Lett. 30 (2018) 993-996.
DOI URL |
[25] |
Y.C. Chen, Y.J. Lu, Q. Liu, C.N. Lin, J. Guo, J.H. Zang, Y.Z. Tian, C.X. Shan, J. Mater. Chem. C 7 (2019) 2557-2562.
DOI URL |
[26] |
Y. Chen, Y. Lu, M. Liao, Y. Tian, Q. Liu, C. Gao, X. Yang, C. Shan, Adv. Funct. Mater. 29 (2019), 1906040.
DOI URL |
[27] |
J. Xu, W. Zheng, F. Huang, J. Mater. Chem. C 7 (2019) 8753-8770.
DOI URL |
[28] |
Z. Galazka, Semicond. Sci. Technol. 33 (2018), 113001.
DOI URL |
[29] |
L.M. Lin, Y. Luo, P.T. Lai, K.M. Lau, Thin Solid Films 515 (2006) 2111-2115.
DOI URL |
[30] |
K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, J. Cryst. Growth 392 (2014) 30-33.
DOI URL |
[31] |
Q. Wang, J. Chen, P. Huang, M. Li, Y. Lu, K.P. Homewood, G. Chang, H. Chen, Y. He, Appl. Surf. Sci. 489 (2019) 101-109.
DOI URL |
[32] |
A.P. Shah, A. Bhattacharya, J. Vac. Sci. Technol. A 35 (2017) 41301.
DOI URL |
[33] |
Y. Zhang, A. Mauze, J.S. Speck, Appl. Phys. Lett. 115 (2019) 13501.
DOI URL |
[34] |
X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, Y. Fang, Small 12 (2016) 595-601.
DOI URL |
[35] |
L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, S.T. Lee, Adv. Funct. Mater. 25 (2015) 2910-2919.
DOI URL |
[36] |
J.G. Hu, L.H. Zeng, M.Z. Wang, H. Hu, B. Nie, Y.Q. Yu, C.Y. Wu, L. Wang, C. Xie, F. X. Liang, L.B. Luo, ACS App. Mater. Interfaces 5 (2013) 9362-9366.
DOI URL |
[37] |
M.Q. Li, N. Yang, G.G. Wang, H.Y. Zhang, J.C. Han, Appl. Surf. Sci. 471 (2019) 694-702.
DOI URL |
[38] |
B.R. Tak, M. Garg, A. Kumar, V. Gupta, R. Singh, ECS J. Solid State Sci. Technol. 8 (2019) Q3149-Q3153.
DOI URL |
[39] | S. Rafique, L. Han, H. Zhao, Phys. Status Solidi 214 (2017), 1700063. |
[40] |
A.S. Pratiyush, U.U. Muazzam, S. Kumar, P. Vijayakumar, S. Ganesamoorthy, N. Subramanian, R. Muralidharan, D.N. Nath, IEEE Photonics Technol. Lett. 31 (2019) 923-926.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||