J. Mater. Sci. Technol. ›› 2021, Vol. 62: 44-51.DOI: 10.1016/j.jmst.2020.05.051
• Research Article • Previous Articles Next Articles
Jiajun Qiua, Lu Liua, Shi Qiana, Wenhao Qianb,**(), Xuanyong Liua,c,*(
)
Received:
2020-04-03
Revised:
2020-04-23
Accepted:
2020-05-08
Published:
2021-01-30
Online:
2021-02-01
Contact:
Wenhao Qian,Xuanyong Liu
About author:
* Shanghai Xuhui District Dental Center, Shanghai 200032, China. E-mail addresses: pingyanlaoto@163.com (W. Qian).1 The authors contribute equally to this work.
Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity?[J]. J. Mater. Sci. Technol., 2021, 62: 44-51.
Fig. 1. Surface morphologies of various samples: (a) Ti, (b) GO, (c) GO-N0, (d) GO-N1 and (e) GO-N2; (f) Raman spectra of Ti, GO, GO-N0, GO-N1 and GO-N2.
Fig. 2. (a) XPS spectra of Ti, GO, GO-N0, GO-N1 and GO-N2 samples; (b) N 1s XPS spectra of GO-N1 sample; (c) N 1s XPS spectra of GO-N2 sample; (d) XRD patterns of Ti, GO, GO-N0, GO-N1 and GO-N2 samples.
Fig. 4. Live/dead staining fluorescent images of E. coli from Ti, GO, GO-N0, GO-N1 and GO-N2 samples. Live and dead bacteria were stained with SYTO 9 and regenerated green fluorescence, while dead bacteria were stained with PI and produced red fluorescence.
Fig. 5. Live/dead staining fluorescent images of S. aureus from Ti, GO, GO-N0, GO-N1 and GO-N2 samples. Live and dead bacteria were stained with SYTO 9 and regenerated green fluorescence, while dead bacteria were stained with PI and produced red fluorescence.
Fig. 7. (a) Photographs of agar culture plates cultured with bacteria suspension collected from Ti, GO, GO-N0, GO-N1 and GO-N2 samples; (b) cell viability of E. coli cultured on Ti, GO, GO-N0, GO-N1 and GO-N2 samples for 24 h; (c) cell viability of S. aureus cultured on Ti, GO, GO-N0, GO-N1 and GO-N2 samples for 24 h. **p < 0.01, ***p < 0.001 vs Ti; ###p < 0.001 vs GO.
Fig. 8. (a) Intracellular ROS levels of E. coli cultured on Ti, GO, GO-N0, GO-N1 and GO-N2 samples for 24 h; (b) intracellular ROS levels of S. aureus cultured on Ti, GO, GO-N0, GO-N1 and GO-N2 samples for 24 h. **p < 0.01, ***p < 0.001 vs Ti; &&p < 0.01, &&&p < 0.001, ###p < 0.001 vs GO.
[1] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666-669.
DOI URL PMID |
[2] |
M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Nano Lett. 8 (2008) 3498-3502.
DOI URL PMID |
[3] |
C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385-388.
DOI URL PMID |
[4] |
A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8 (2008) 902-907.
URL PMID |
[5] |
K. Kim, H.J. Park, B.C. Woo, K.J. Kim, G.T. Kim, W.S. Yun, Nano Lett. 8 (2008) 3092-3096.
DOI URL PMID |
[6] |
K.P. Loh, Q.L. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2 (2010) 1015-1024.
URL PMID |
[7] |
T.F. Yeh, C.Y. Teng, S.J. Chen, H.S. Teng, Adv. Mater. 26 (2014) 3297-3303.
DOI URL PMID |
[8] | Y.X. Zhao, H.L. Ding, Q. Zhong, Appl. Surf. Sci. 258 (2012) 4301-4307. |
[9] |
Y. Wang, Z.H. Li, J. Wang, J.H. Li, Y.H. Lin, Trends Biotechnol. 29 (2011) 205-212.
DOI URL PMID |
[10] | T.H. Kim, T. Lee, W.A. El-Said, J.W. Choi, Materials (Basel) 8 (2015) 8674-8690. |
[11] |
X.M. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H.J. Dai, Nano Res. 1 (2008) 203-212.
DOI URL PMID |
[12] | J.J. Yang, Z.F. Zhang, W.T. Pang, H.J. Chen, G.Q. Yan, Sens. Actuators B Chem. 301 (2019), 127014. |
[13] |
M.D. Zhao, T.T. Shan, Q. Wu, L.S. Gu, J. Nanosci. Nanotechnol. 20 (2020) 2095-2103.
DOI URL PMID |
[14] | S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, J.H. Kim, Int. J. Nanomed. 7 (2012) 5901-5914. |
[15] |
X. Zou, L. Zhang, Z. Wang, Y. Luo, J. Am. Chem. Soc. 138 (2016) 2064-2077.
DOI URL PMID |
[16] | X. Cai, S.Z. Tan, M.S. Lin, A. Xie, W.J. Mai, X.J. Zhang, Z.D. Lin, T. Wu, Y.L. Liu, Langmuir 27 (2011) 7828-7835. |
[17] | J.J. Qiu, H. Geng, D.H. Wang, H.Q. Zhu, Y.Q. Qiao, W.H. Qian, X.Y. Liu, ACS Appl. Mater. Interfaces 9 (2017) 12253-12263. |
[18] |
V.T.H. Pham, V.K. Truong, M.D.J. Quinn, S.M. Notley, Y.C. Guo, V.A. Baulin, M. A.I. Kobaisi, R.J. Crawford, E.P. Ivanova, ACS Nano 9 (2015) 8458-8467.
DOI URL PMID |
[19] |
S. Park, N. Mohanty, J.W. Suk, A. Nagaraja, J.H. An, R.D. Piner, W.W. Cai, D.R. Dreyer, V. Berry, R.S. Ruoff, Adv. Mater. 22 (2010) 1736-1740.
DOI URL PMID |
[20] |
J.H. Li, G. Wang, H.Q. Zhu, M. Zhang, X.H. Zheng, Z.F. Di, X.Y. Liu, X. Wang, Sci. Rep. 4 (2014) 4359.
DOI URL PMID |
[21] | J.J. Qiu, D.H. Wang, H. Geng, J.S. Guo, S. Qian, X.Y. Liu, Adv. Mater. Interfaces 4 (2017), 1700228. |
[22] | S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, M.R. Park, D.N. Kwon, J.H. Kim, J. Ind. Eng. Chem. 19 (2013) 1280-1288. |
[23] | S. Panda, T.K. Rout, A.D. Prusty, P.M. Ajayan, S. Nayak, Adv. Mater. 30 (2018), 1702149. |
[24] | H. Liu, Y. Liu, D. Zhu, J. Mater. Chem. 21 (2011) 3335-3345. |
[1] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[2] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[3] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[4] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
[5] | Peixing Chen, Sixiang Wang, Zhi Huang, Yan Gao, Yu Zhang, Chunli Wang, Tingting Xia, Linhao Li, Wanqian Liu, Li Yang. Multi-functionalized nanofibers with reactive oxygen species scavenging capability and fibrocartilage inductivity for tendon-bone integration [J]. J. Mater. Sci. Technol., 2021, 70(0): 91-104. |
[6] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
[7] | Myung-Sic Chae, Tae Ho Lee, Kyung Rock Son, Tae Hoon Park, Kyo Seon Hwang, Tae Geun Kim. Electrochemically metal-doped reduced graphene oxide films: Properties and applications [J]. J. Mater. Sci. Technol., 2020, 40(0): 72-80. |
[8] | Xueying Yang, Cuili Xiang, Yongjin Zou, Jing Liang, Huanzhi Zhang, Erhu Yan, Fen Xu, Xuebu Hu, Qiong Cheng, Lixian Sun. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 223-230. |
[9] | Xiaohui Zhang, Yi Zhang, Baohong Tian, Yanlin Jia, Ming Fu, Yong Liu, Kexing Song, Alex.A. Volinsky, Xiao Yang, Hang Sun. Graphene oxide effects on the properties of Al2O3-Cu/35W5Cr composite [J]. J. Mater. Sci. Technol., 2020, 37(0): 185-199. |
[10] | O. Kapitanova Olesya, V. Emelin Evgeny, G. Dorofeev Sergey, V. Evdokimov Pavel, N. Panin Gennady, Lee Youngmin, Lee Sejoon. Direct patterning of reduced graphene oxide/graphene oxide memristive heterostructures by electron-beam irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 237-243. |
[11] | Hao Yu, Yi He, Guoqing Xiao, Yi Fan, Jing Ma, Yixuan Gao, Ruitong Hou, Jingyu Chen. Weak-reduction graphene oxide membrane for improving water purification performance [J]. J. Mater. Sci. Technol., 2020, 39(0): 106-112. |
[12] | Tingyue Gu, Ru Jia, Tuba Unsal, Dake Xu. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35(4): 631-636. |
[13] | Khalid Hussain Thebo, Xitang Qian, Qinwei Wei, Qing Zhang, Hui-Ming Cheng, Wencai Ren. Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation [J]. J. Mater. Sci. Technol., 2018, 34(9): 1481-1486. |
[14] | Chi Xiao, Liqing Wang, Yuping Ren, Shineng Sun, Erlin Zhang, Chongnan Yan, Qi Liu, Xiaogang Sun, Fenyong Shou, Jingzhu Duan, Huang Wang, Gaowu Qin. Indirectly extruded biodegradable Zn-0.05wt%Mg alloy with improved strength and ductility: In vitro and in vivo studies [J]. J. Mater. Sci. Technol., 2018, 34(9): 1618-1627. |
[15] | Jun Ma, Shaochun Tang, Junaid Ali Syed, Dongyun Su, Xiangkang Meng. High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure [J]. J. Mater. Sci. Technol., 2018, 34(7): 1103-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||