J. Mater. Sci. Technol. ›› 2020, Vol. 58: 171-187.DOI: 10.1016/j.jmst.2020.05.005
• Research Article • Previous Articles Next Articles
Jian-kun Rena,b, Yun Chenc, Yan-fei Caoc, Ming-yue Suna,c,*(
), Bin Xua,c, Dian-zhong Lic
Received:2019-11-26
Accepted:2020-03-05
Published:2020-12-01
Online:2020-12-17
Contact:
Ming-yue Sun
Jian-kun Ren, Yun Chen, Yan-fei Cao, Ming-yue Sun, Bin Xu, Dian-zhong Li. Modeling motion and growth of multiple dendrites during solidification based on vector-valued phase field and two-phase flow models[J]. J. Mater. Sci. Technol., 2020, 58: 171-187.
| Parameter | Value |
|---|---|
| a1 | 0.8839 |
| s | W0/1.06 |
| β | 105 |
| τα | τ0 |
| a2 | 0.6267 |
| η | W0/1.875 |
| μc | 103W0 |
Table 1 Default parameters in phase field model [22].
| Parameter | Value |
|---|---|
| a1 | 0.8839 |
| s | W0/1.06 |
| β | 105 |
| τα | τ0 |
| a2 | 0.6267 |
| η | W0/1.875 |
| μc | 103W0 |
Fig. 1. Schematic phase diagram for a typical dilute binary alloy. Blue line: liquidus, red line: solidus. l1 = Tm + mc∞ - T, l2 = Tl-s. cl, cs: equilibrium concentrations in liquid and solid at temperature T.In Eq. (1)
Fig. 2. Evolution of F due to dendritic growth in a time step dt. Dot line: advancing F by equation without splitting (Eq. (22)); solid line: advancing F by “split equation 1” (Eq. (23)) and “split equation 2” (Eq. (24)); F*: intermediate solution.
Fig. 5. Comparison between flow fields computed by our FSI model and Fluent: (a) The configuration of the curved channel (unit: mm); (b, d) phase field and inflow velocity profile; (c, e) flow field at t = 1 s. Dashed lines in (c) indicate the s-l interface.
Fig. 7. Evolution of s-l interface of a growing circular grain: (a) moving grain driven by uniformly imposed flow field v = (1, 1) W0/τ0 (when t < 128 τ0) and -v (when t > 128 τ0); (b) motionless grain; (c) comparison between the final interfaces in two cases. The domain was l × l with l = 256 W0 and the initial radius was 25 W0 (blue interface: moving grain; red interface: motionless grain). The crosses indicate where the grain should have been centered. O1 : (0.25, 0.25) l, O2 : (0.75, 0.75) l.
Fig. 8. (a) Snapshots of s-l interface of a rotational dendrite (red: t = 300 τ0, black: t = 1800 τ0, green: t = 3300 τ0); (b) comparison with motionless dendrite at t = 3000 τ0 (red: with rotation, black: without rotation); (c, d) dimensionless temperature field, phase and flow field of rotational dendrite at t = 3000 τ0. The lines in (a) indicate the orientation this dendrite should have at each moment. In (b), the rotational dendrite has been rotated back to α = 0 for comparison.
| Parameter | Value |
|---|---|
| Tm (Al) | 933 K [ |
| ε4 | 0.05 |
| Dcl | 2.4 × 10-9 m2/s [ |
| γ | 0.914 N/m [ |
| f | (0, -9.8) m/s2 |
| ρAl(l) | 2368 kg/m3 [ |
| ρCu(l) | 8000 kg/m3 [ |
| d0/W0 | 0.02 |
| c∞ | 4 wt.% |
| k | 0.175 [ |
| m | -2.5 K/wt.% [ |
| L | 9.22 × 108 J/m3 [ |
| νAl(l) | 6.3 × 10-7 m2/s [ |
| ρAl(s) | 2555 kg/m3 [ |
| ρCu(s) | 8400 kg/m3 [ |
Table 2 Parameters in Section 4.
| Parameter | Value |
|---|---|
| Tm (Al) | 933 K [ |
| ε4 | 0.05 |
| Dcl | 2.4 × 10-9 m2/s [ |
| γ | 0.914 N/m [ |
| f | (0, -9.8) m/s2 |
| ρAl(l) | 2368 kg/m3 [ |
| ρCu(l) | 8000 kg/m3 [ |
| d0/W0 | 0.02 |
| c∞ | 4 wt.% |
| k | 0.175 [ |
| m | -2.5 K/wt.% [ |
| L | 9.22 × 108 J/m3 [ |
| νAl(l) | 6.3 × 10-7 m2/s [ |
| ρAl(s) | 2555 kg/m3 [ |
| ρCu(s) | 8400 kg/m3 [ |
Fig. 10. The growth and settlement of a single dendrite (t = 1.53 s): (a) velocity distribution and s-l interface; (b) solute distribution; (c) concentration isolines after zooming in (from 0.9 to 5.7 wt.% at an interval of 0.4 wt.%).
Fig. 11. (a) Initial positions and orientations of solid seeds: (1) (0.14, 0.2) mm, 0.19π, (2) (0.3, 0.94) mm, 0.08π, (3) (0.48, 1.8) mm, 0.04π, (4) (0.62, 1.04) mm, -0.23π, (5) (0.84, 0.24) mm, -0.2π; (b, c) Velocity (with s-l interfaces) and solute distribution of settling dendrites at t = 1.46 s.
Fig. 12. Phase field (a), concentration (b), orientation (c) field and mesh partition (d) at t = 3.17 s. In (d), each color identifies the subdomain owned by the corresponding processor, with 380 thousand nodes in all.
Fig. 13. (a) A close-up image of adaptive mesh after zooming to the box in Fig. 12(a); (b) vector-valued phase field F in the box in (a); (c) relationship between F and (?, α).
| [1] | A. Karma, W.J. Rappel, Phys. Rev. E 57 (4) (1998) 4323-4349. |
| [2] | J.A. Warren, R. Kobayashi, A.E. Lobkovsky, W. Craig Carter , Acta Mater. 51 (20) (2003) 6035-6058. |
| [3] | B. Echebarria, R. Folch, A. Karma, M. Plapp, Phys. Rev. E 70 (6 Pt 1) (2004), 061604. |
| [4] | S. Pan, M. Zhu, Acta Mater. 58 (1) (2010) 340-352. |
| [5] | T.Z. Gong, Y. Chen, Y.F. Cao, X.H. Kang, D.Z. Li, Comput. Mater. Sci. 147 (2018) 338-352. |
| [6] | Y. Chen, X.B. Qi, D.Z. Li, X.H. Kang, N.M. Xiao, Comput. Mater. Sci. 104 (2015) 155-161. |
| [7] | H. Xing, K. Ankit, X. Dong, H. Chen, K. Jin, Int. J. Heat Mass Transf. 117 (2018) 1107-1114. |
| [8] | X. Tong, C. Beckermann, A. Karma, Q. Li, Phys. Rev. E 63 (6 Pt 1) (2001), 061601. |
| [9] | C.C. Chen, Y.L. Tsai, C.W. Lan, Int. J. Heat Mass Transf. 52 (5-6) (2009) 1158-1166. |
| [10] | T.Z. Gong, Y. Chen, D.Z. Li, Y.F. Cao, P.X. Fu, Int. J. Heat Mass Transf. 135 (2019) 262-273. |
| [11] | X. Zhang, J. Kang, Z. Guo, S. Xiong, Q. Han, Comput. Phys. Commun. 223 (2018) 18-27. |
| [12] | S. Sakane, T. Takaki, R. Rojas, M. Ohno, Y. Shibuta, T. Shimokawabe, T. Aoki, J. Cryst. Growth 474 (2017) 154-159. |
| [13] | X.B. Qi, Y. Chen, X.H. Kang, D.Z. Li, ISO: Adv. Mater. Sci. Eng. (2016) 1-10. |
| [14] | M. Yamaguchi, C. Beckermann, Acta Mater. 61 (2013) 4053-4065. |
| [15] | M. Yamaguchi, C. Beckermann, Acta Mater. 61 (2013) 2268-2280. |
| [16] | R. Rojas, T. Takaki, M. Ohno, J. Comput. Phys. 298 (2015) 29-40. |
| [17] | T. Takaki, R. Sato, R. Rojas, M. Ohno, Y. Shibuta, Comput. Mater. Sci. 147 (2018) 124-131. |
| [18] | S. Lee, Y. Li, J. Shin, J. Kim, Comput. Phys. Commun. 216 (2017) 84-94. |
| [19] |
X.B. Qi, Y. Chen, X.H. Kang, D.Z. Li, T.Z. Gong, Sci. Rep. 7 (2017) 45770.
URL PMID |
| [20] | R. Kobayashi, J.A. Warren, W.C. Carter, Physica D 119 (1998) 415-423. |
| [21] | R. Kobayashi, J.A. Warren, W.C. Carter, ACH-Models Chem. 135 (1998) 287-295. |
| [22] | J.K. Ren, Y. Chen, B. Xu, M.Y. Sun, D.Z. Li, Comput. Mater. Sci. 163 (2019) 37-49. |
| [23] | D. Borzacchiello, E. Leriche, B. Blottière, J. Guillet, Comput. Fluids 156 (2017) 515-525. |
| [24] | M. Furuichi, D.A. May, P.J. Tackley, J. Comput. Phys. 230 (2011) 8835-8851. |
| [25] | D.A. May, L. Moresi, Phys. Earth Planet. Inter. 171 (2008) 33-47. |
| [26] | M. Kronbichler, T. Heister, W. Bangerth, Geophys. J. Int. 191 (2012) 12-29. |
| [27] | T. Höink, A. Lenardic, Geophys. Res. Lett. 35 (2008), L10304. |
| [28] | R.C.A. Hindmarsh, J. Geophys. Res.Earth Surf. 109 (2004), F01012. |
| [29] |
A. Karma, Phys. Rev. Lett. 87 (2001), 115701.
URL PMID |
| [30] | J. Shen, X. Yang, SIAM J. Sci. Comput. 32 (2010) 1159-1179. |
| [31] | S. Dong, J. Shen, J. Comput. Phys. 231 (2012) 5788-5804. |
| [32] | P.H. Chiu, Y.T. Lin, J. Comput. Phys. 230 (2011) 185-204. |
| [33] | J.G. Heywood, R. Rannacher, S. Turek, Int. J. Numer. Methods Fluids 22 (5) (1996) 325-352. |
| [34] | T. Richter, J. Comput. Phys. 233 (2013) 227-240. |
| [35] | T. Wick, Comput. Meth. Appl. Mech. Eng. 255 (2013) 14-26. |
| [36] | O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu, The Finite Element Method for Fluid Dynamics, 2014, pp. 127-161. |
| [37] | O.C. Zienkiewicz, P.N. Godbole, Int. J. Numer. Methods Eng. 8 (1) (1974) 3-16. |
| [38] | O.C. Zienkiewicz, P.C. Jain, E. Onate, Int. J. Solids Struct. 14 (1) (1978) 15-38. |
| [39] | Y. Sun, C. Beckermann, J. Comput. Phys. 220 (2007) 626-653. |
| [40] | D.R. Poirier, G.H. Geiger, Transport Phenomena in Materials Processing, Springer International Publishing, Cham, 2016, pp. 615. |
| [41] | Al-Cu Binary Phase Diagram 0-18 at.% Cu: Datasheet From “PAULING FILE Multinaries Edition - 2012” in SpringerMaterials, Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan, 2016 (accessed 30 June 2019) https://materials.springer.com/isp/phase-diagram/docs/c0904910. |
| [42] | A.S.M.I.H. Committee, ASM Handbook, Vol. 15 - Casting, ASM International, p. 474. |
| [43] | R.C. Reed, Superalloys - Fundamentals and Applications, Cambridge University Press, p. 137. |
| [44] | W. Kurz, D. Fisher, Fundamentals of Solidification, third ed., Trans Tech Publications Ltd, Netherlands, 1992. |
| [45] | Z. Guo, S.M. Xiong, Comput. Phys. Commun. 190 (2015) 89-97. |
| [46] | R. Kobayashi, J.A. Warren, Physica A 356 (2005) 127-132. |
| [47] | D. Silvester, H. Elman, D. Kay, A. Wathen, J. Comput. Appl. Math. 128 (2001) 261-279. |
| [48] | https://www.dealii.org (accessed 20 September 2018). |
| [49] | https://www.ansys.com/products/fluids/ansys-fluent (accessed 4 September 2019). |
| [50] | https://www.dealii.org/current/doxygen/deal.II/step_20.html (accessed 12 July 2019). |
| [51] | https://www.dealii.org/current/doxygen/deal.II/step_22.html (accessed 12 July 2019). |
| [52] | https://www.dealii.org/current/doxygen/deal.II/step_32.html (accessed 4 June 2019). |
| [53] | https://www.dealii.org/current/doxygen/deal.II/step_9.html (accessed 3 June 2019). |
| [1] | Lei Luo, Liangshun Luo, Robert O. Ritchie, Yanqing Su, Binbin Wang, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 61(0): 100-113. |
| [2] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
| [3] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
| [4] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
| [5] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
| [6] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
| [7] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
| [8] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
| [9] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
| [10] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
| [11] | Weidan Ma, Jun Zhang, Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates [J]. J. Mater. Sci. Technol., 2021, 65(0): 89-98. |
| [12] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
| [13] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
| [14] | Jia Sun, Min Qi, Jinhu Zhang, Xuexiong Li, Hao Wang, Yingjie Ma, Dongsheng Xu, Jiafeng Lei, Rui Yang. Formation mechanism of α lamellae during β→α transformation in polycrystalline dual-phase Ti alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 98-108. |
| [15] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
