J. Mater. Sci. Technol. ›› 2020, Vol. 55: 126-135.DOI: 10.1016/j.jmst.2019.10.003
• Research Article • Previous Articles Next Articles
Jin Kyu Kima, Chang Soo Leea, Jae Hun Leea, Jung Tae Parkb,*(), Jong Hak Kima,*(
)
Received:
2019-07-14
Accepted:
2019-10-05
Published:
2020-10-15
Online:
2020-10-27
Contact:
Jung Tae Park,Jong Hak Kim
Jin Kyu Kim, Chang Soo Lee, Jae Hun Lee, Jung Tae Park, Jong Hak Kim. Ni, Co-double hydroxide wire structures with controllable voids for electrodes of energy-storage devices[J]. J. Mater. Sci. Technol., 2020, 55: 126-135.
Fig. 6. CV curves of (a) different NCHW electrodes obtained at 10 mV/s and (b) the NCHW-2 electrode obtained at various scan rates; (c) specific capacitances of different NCHW electrodes with respect to the scan rate.
Samples | C | O | Co | Ni | Ni/Co |
---|---|---|---|---|---|
NCHW-1 | 17.54 | 59.27 | 16.86 | 6.33 | 0.38 |
NCHW-2 | 17.13 | 60.01 | 15.47 | 7.39 | 0.48 |
NCHW-3 | 16.63 | 59.86 | 14.96 | 8.55 | 0.57 |
NCHW-4 | 13.99 | 58.32 | 17.20 | 10.49 | 0.61 |
Table 1 Atomic percentage of different NCHW structures obtained from EDS results.
Samples | C | O | Co | Ni | Ni/Co |
---|---|---|---|---|---|
NCHW-1 | 17.54 | 59.27 | 16.86 | 6.33 | 0.38 |
NCHW-2 | 17.13 | 60.01 | 15.47 | 7.39 | 0.48 |
NCHW-3 | 16.63 | 59.86 | 14.96 | 8.55 | 0.57 |
NCHW-4 | 13.99 | 58.32 | 17.20 | 10.49 | 0.61 |
Samples | 100 mV/s | 50 mV/s | 20 mV/s | 10 mV/s |
---|---|---|---|---|
NCHW-1 | 249.5 | 365.7 | 545.4 | 735.2 |
NCHW-2 | 299.1 | 451.1 | 667.0 | 834.0 |
NCHW-3 | 222.2 | 329.0 | 487.6 | 580.3 |
NCHW-4 | 107.0 | 161.9 | 233.5 | 247.8 |
Table 2 Specific capacitances (mF/cm2) of the different NCHW electrodes calculated using CV at various scan rates.
Samples | 100 mV/s | 50 mV/s | 20 mV/s | 10 mV/s |
---|---|---|---|---|
NCHW-1 | 249.5 | 365.7 | 545.4 | 735.2 |
NCHW-2 | 299.1 | 451.1 | 667.0 | 834.0 |
NCHW-3 | 222.2 | 329.0 | 487.6 | 580.3 |
NCHW-4 | 107.0 | 161.9 | 233.5 | 247.8 |
Fig. 7. GCD curves of (a) different NCHW electrodes obtained at 10 mA/cm2 and (b) the NCHW-2 electrode obtained at various current densities; (c) specific capacitances of different NCHW electrodes with respect to the current density.
Samples | 20 mA/cm2 | 10 mA/cm2 | 5 mA/cm2 | 2 mA/cm2 |
---|---|---|---|---|
NCHW-1 | 408.3 | 590.3 | 788.1 | 1208.6 |
NCHW-2 | 590.8 | 860.1 | 1058.1 | 1694.7 |
NCHW-3 | 298.1 | 446.0 | 600.4 | 797.4 |
NCHW-4 | 129.5 | 224.6 | 333.8 | 646.0 |
Table 3 Specific capacitances (mF/cm2) of the different NCHW electrodes calculated using GCD at various current densities.
Samples | 20 mA/cm2 | 10 mA/cm2 | 5 mA/cm2 | 2 mA/cm2 |
---|---|---|---|---|
NCHW-1 | 408.3 | 590.3 | 788.1 | 1208.6 |
NCHW-2 | 590.8 | 860.1 | 1058.1 | 1694.7 |
NCHW-3 | 298.1 | 446.0 | 600.4 | 797.4 |
NCHW-4 | 129.5 | 224.6 | 333.8 | 646.0 |
Electrode | Electrolyte | Substrate | Specific capacitance | Reference |
---|---|---|---|---|
Ni, Co-hydroxides | 6 M KOH | Ni foam | 1.69 F/cm2 at 2 mA/cm2 | This work |
Core-shell Ni nanowires@Ni, Co-hydroxides | 6 M KOH | Ni foam | 2.25 F/cm2 at 5 mA/cm2 | [ |
C nanotubes/Ni, Co-hydroxides | 2 M KOH | Ni foam | 1.62 F/cm2 at 1 mA/cm2 | [ |
Reduced graphene oxide/Ni, Co-hydroxides | 1 M KOH | Ni foam | 0.70 F/cm2 at 10 mA/cm2 | [ |
NiCo2O4/Ni, Co-hydroxides | 1 M KOH | C fiber | 1.64 F/cm2 at 2 mA/cm2 | [ |
ZnO, C nanorods/Ni, Co-hydroxides | 1 M KOH | C fiber paper | 0.88 F/cm2 at 1 mA/cm2 | [ |
Ag nanowires/Ni, Co-hydroxides | 1 M KOH | C cloth | 1.13 F/cm2 at 1 mA/cm2 | [ |
Ni, Co-hydroxides | 1 M KOH | C nanofoam paper | 2.03 F/cm2 at 2.1 mA/cm2 | [ |
Table 4 Comparison between the proposed electrode and previously reported electrodes.
Electrode | Electrolyte | Substrate | Specific capacitance | Reference |
---|---|---|---|---|
Ni, Co-hydroxides | 6 M KOH | Ni foam | 1.69 F/cm2 at 2 mA/cm2 | This work |
Core-shell Ni nanowires@Ni, Co-hydroxides | 6 M KOH | Ni foam | 2.25 F/cm2 at 5 mA/cm2 | [ |
C nanotubes/Ni, Co-hydroxides | 2 M KOH | Ni foam | 1.62 F/cm2 at 1 mA/cm2 | [ |
Reduced graphene oxide/Ni, Co-hydroxides | 1 M KOH | Ni foam | 0.70 F/cm2 at 10 mA/cm2 | [ |
NiCo2O4/Ni, Co-hydroxides | 1 M KOH | C fiber | 1.64 F/cm2 at 2 mA/cm2 | [ |
ZnO, C nanorods/Ni, Co-hydroxides | 1 M KOH | C fiber paper | 0.88 F/cm2 at 1 mA/cm2 | [ |
Ag nanowires/Ni, Co-hydroxides | 1 M KOH | C cloth | 1.13 F/cm2 at 1 mA/cm2 | [ |
Ni, Co-hydroxides | 1 M KOH | C nanofoam paper | 2.03 F/cm2 at 2.1 mA/cm2 | [ |
[1] | L. Zhao, Y. Xing, X. Xie, J. Lai, N. Zhao, N. Chen, L. Li, F. Wu, R. Chen, Chem. Commun. 55 (2019) 2102-2105. |
[2] | M. Chen, Z. Pan, X. Jin, Z. Chen, Y. Zhong, X. Wang, Y. Qiu, M. Xu, W. Li, Y. Zhang, J. Mater. Chem. A 7 (2019) 4494-4504. |
[3] | L. Liu, X. Hu, H.Y. Zeng, M.Y. Yi, S.G. Shen, S. Xu, X. Cao, J.Z. Du, J. Mater. Sci. Technol. 35 (2019) 1691-1699. |
[4] | P. Zhanga, Q. Rua, H. Yana, X. Hou, F. Chen, S. Hu, L. Zhao, J. Mater. Sci. Technol. 35 (2019) 1840-1850. |
[5] | J. Du, L. Liu, Y. Yu, Y. Zhang, H. Lv, A. Chen, J. Mater. Sci. Technol. 35 (2019) 2178-2186. |
[6] |
M. Zhao, Q. Zhao, B. Li, H. Xue, H. Pang, C. Chen, Nanoscale 9 (2017) 15206-15225.
DOI URL PMID |
[7] |
F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Chem. Soc. Rev. 46 (2017) 6816-6854.
DOI URL PMID |
[8] | Q. Wang, J. Yan, Z. Fan, Energy Environ. Sci. 9 (2016) 729-762. |
[9] | G. Zhang, X. Xiao, B. Li, P. Gu, H. Xue, H. Pang, J. Mater. Chem. A 5 (2017) 8155-8186. |
[10] | L. Li, J. Zhang, J. Lei, J. Xu, B. Shang, L. Liu, N. Li, F. Pan, J. Mater. Chem. A 6 (2018) 7099-7106. |
[11] | H. Sheng, X. Zhang, Y. Ma, P. Wang, J. Zhou, Q. Su, W. Lan, E. Xie, C.J. Zhang, ACS Appl. Mater. Interface 11 (2019) 8992-9001. |
[12] | Q. He, Y. Wang, X.X. Liu, D.J. Blackwood, J.S. Chen, J. Mater. Chem. A 6 (2018) 22115-22122. |
[13] | N.M. Shinde, Q.X. Xia, P.V. Shinde, J.M. Yun, R.S. Mane, K.H. Kim, ACS Appl. Mater. Interface 11 (2019) 4551-4559. |
[14] | M. Boota, Y. Gogotsi, Adv. Energy Mater. 9 (2019), 1802917. |
[15] |
Y. He, X. Wang, H. Huang, P. Zhang, B. Chen, Z. Guo, Appl. Surf. Sci. 469 (2019) 446-455.
DOI URL |
[16] |
X. Zheng, Z. Gu, Q. Hu, B. Geng, X. Zhang, RSC Adv. 5 (2015) 17007-17013.
DOI URL |
[17] | D. Zha, H. Sun, Y. Fu, X. Ouyang, X. Wang, Electrochim. Acta 236 (2017) 18-27. |
[18] | X. Cai, Y. Song, Z. Sun, D. Guo, X.X. Liu, J. Power Sources 365 (2017) 126-133. |
[19] | S. Li, C. Yu, J. Yang, C. Zhao, M. Zhang, H. Huang, Z. Liu, W. Guo, J. Qiu, Energy Environ. Sci. 10 (2017) 1958-1965. |
[20] | X. Wang, Y. Zheng, J. Yuan, J. Shen, J. Hu, A.J. Wang, L. Wu, L. Niu, Electrochim.Acta 224 (2017) 628-635. |
[21] |
H. Chen, F. Cai, Y. Kang, S. Zeng, M. Chen, Q. Li, ACS Appl. Mater. Interfaces 6 (2014) 19630-19637.
URL PMID |
[22] | M.M. Rao, B.R. Reddy, M. Jayalakshmi, V.S. Jaya, B. Sridhar, Mater. Res. Bull. 40 (2005) 347-359. |
[23] | M. Rajamathi, P.V. Kamath, Int. J. Inorg. Mater. 3 (2001) 901-906. |
[24] | L.H. Chagas, G.S.G. De Carvalho, W.R. Do Carmo, R.A.S. San Gil, S.S.X. Chiaro, A.A. Leit?o, R. Diniz, L.A. De Sena, C.A. Achete, Mater. Res. Bull. 64 (2015) 207-215. |
[25] | L. Ye, L. Zhao, H. Zhang, B. Zhang, H. Wang, J. Mater. Chem. A 4 (2016) 9160-9168. |
[26] | K.A. House, J.E. House, J. Mol. Liq. 242 (2017) 428-432. |
[27] | F.M. Lee, L.E. Lahti, J. Chem. Eng. Data 17 (1972) 304-306. |
[28] |
G. Nagaraju, G.S.R. Raju, Y.H. Ko, J.S. Yu, Nanoscale 8 (2015) 812-825.
URL PMID |
[29] | J. Li, M. Wei, W. Chu, N. Wang, Chem. Eng. J. 316 (2017) 277-287. |
[30] | M. Taibi, S. Ammar, N. Jouini, F. Fiévet, P. Molinié, M. Drillon, J. Mater. Chem. 12 (2002) 3238-3244. |
[31] | H. Niu, D. Zhou, X. Yang, X. Li, Q. Wang, F. Qu, J. Mater. Chem. A 3 (2015) 18413-18421. |
[32] | W. He, C. Wang, H. Li, X. Deng, X. Xu, T. Zhai, Adv. Energy Mater. 7 (2017), 1700983. |
[33] | C. Zhang, J. Xiao, X. Lv, L. Qian, S. Yuan, S. Wang, P. Lei, J. Mater. Chem. A 4 (2016) 16516-16523. |
[34] | S. Liu, Q. Zhao, M. Tong, X. Zhu, G. Wang, W. Cai, H. Zhang, H. Zhao, J. Mater.Chem. A 4 (2016) 17080-17086. |
[35] | S. Wu, K.S. Hui, K.N. Hui, K.H. Kim, J. Mater. Chem. A 4 (2016) 9113-9123. |
[36] | L. Zhang, L. Dong, M. Li, P. Wang, J. Zhang, H. Lu, J. Mater. Chem. A 6 (2018) 1412-1422. |
[37] |
B. Saravanakumar, S.S. Jayaseelan, M.K. Seo, H.Y. Kim, B.S. Kim, Nanoscale 9 (2017) 18819-18834.
URL PMID |
[38] | L. Wang, G. Zhang, X. Zhang, H. Shi, W. Zeng, H. Zhang, Q. Liu, C. Li, Q. Liu, H. Duan, J. Mater. Chem. A 5 (2017) 14801-14810. |
[39] | M. Qorbani, T. Chou, Y.H. Lee, S. Samireddi, N. Naseri, A. Ganguly, A. Esfandiar, C.-H. Wang, L.C. Chen, K.H. Chen, A.Z. Moshfegh, J. Mater. Chem. A 5 (2017) 12569-12577. |
[40] | S. Ortaboy, J.P. Alper, F. Rossi, G. Bertoni, G. Salviati, C. Carraro, R. Maboudian, Energy Environ. Sci. 10 (2017) 1505-1516. |
[41] | Y. Pan, Y. Zhao, S. Mu, Y. Wang, C. Jiang, Q. Liu, Q. Fang, M. Xue, S. Qiu, J. Mater. Chem. A 5 (2017) 9544-9552. |
[42] | X. Song, C. Huang, Y. Qin, H. Li, H.C. Chen, J. Mater. Chem. A 6 (2018) 16205-16212. |
[43] |
G.F. Chen, X.X. Li, L.Y. Zhang, N. Li, T.Y. Ma, Z.Q. Liu, Adv. Mater. 28 (2016) 7680-7687.
DOI URL PMID |
[44] | S. Liu, K.S. Hui, K.N. Hui, H.F. Li, K.W. Ng, J. Xu, Z. Tang, S.C. Jun, J. Mater. Chem. A 5 (2017) 19046-19053. |
[45] | W. Bao, A.K. Mondal, J. Xu, C. Wang, D. Su, G. Wang, J. Power Sources 325 (2016) 286-291. |
[46] | F. Gao, J. Qu, C. Geng, G. Shao, M. Wu, J. Mater. Chem. A 4 (2016) 7445-7452. |
[47] | R. Patel, A.I. Inamdar, B. Hou, S. Cha, A.T. Ansari, J.L. Gunjakar, H. Im, H. Kim, Curr. Appl. Phys. 17 (2017) 501-506. |
[48] | T. Yan, Z. Li, R. Li, Q. Ning, H. Kong, Y. Niu, J. Liu, J. Mater. Chem. 22 (2012) 23587-23592. |
[49] | M. Yang, H. Cheng, Y. Gu, Z. Sun, J. Hu, L. Cao, F. Lv, M. Li, W. Wang, Z. Wang, S. Wu, H. Liu, Z. Lu, Nano Res. 8 (2015) 2744-2754. |
[50] | F. Lai, Y. Huang, Y.E. Miao, T. Liu, Electrochim. Acta 174 (2015) 456-463. |
[51] | J. Xu, C. Ma, J. Cao, Z. Chen, Dalton Trans. 46 (2017) 3276-3283. |
[52] | J. Liang, R. Ma, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Chem. Mater. 22 (2010) 371-378. |
[53] | H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Adv. Funct. Mater. 24 (2014) 934-942. |
[54] | M. Jana, S. Saha, P. Samanta, N.C. Murmu, N.H. Kim, T. Kuila, J.H. Lee, J. Mater. Chem. A 4 (2016) 2188-2197. |
[55] | L. Jiang, S. Shanmuganathan, G.W. Nelson, S.O. Han, H. Kim, I.N. Sim, J.S. Foord, J. Solid State Electrochem. 22 (2018) 387-393. |
[56] | X. Bai, Q. Liu, H. Zhang, J. Liu, Z. Li, X. Jing, Y. Yuan, L. Liu, J. Wang, Electrochim. Acta 215 (2016) 492-499. |
[57] | L. Li, X. Liu, C. Liu, H. Wan, J. Zhang, P. Liang, H. Wang, H. Wang, Electrochim. Acta 259 (2018) 303-312. |
[58] |
J. Wu, W.W. Liu, Y.X. Wu, T.C. Wei, D. Geng, J. Mei, H. Liu, W.M. Lau, L.M. Liu, Electrochim. Acta 203 (2016) 21-29.
DOI URL |
[59] | S. Dong, A.Q. Dao, B. Zheng, Z. Tan, C. Fu, H. Liu, F. Xiao, Electrochim. Acta 152 (2015) 195-201. |
[60] |
L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nano Lett. 13 (2013) 3135-3139.
DOI URL PMID |
[61] |
L. Wan, J. Xiao, F. Xiao, S. Wang, ACS Appl. Mater. Interfaces 6 (2014) 7735-7742.
DOI URL PMID |
[62] | S.C. Sekhar, G. Nagaraju, J.S. Yu, Nano Energy 36 (2017) 58-67. |
[63] | T. Nguyen, M. Boudard, M.J. Carmezim, M.F. Montemor, Energy 126 (2017) 208-216. |
[64] | Q. Liu, Z. Chen, S. Jing, H. Zhuo, Y. Hu, J. Liu, L. Zhong, X. Peng, C. Liu, J. Mater. Chem. A 6 (2018) 20338-20346. |
[65] | B. Wei, H. Liang, Z. Qi, D. Zhang, H. Shen, W. Hu, Z. Wang, Chem. Commun. 55 (2019) 1402-1405. |
[1] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
[2] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor [J]. J. Mater. Sci. Technol., 2021, 62(0): 60-69. |
[3] | Daqiang Jiang, Zhenghao Jia, Hong Yang, Yinong Liu, Fangfeng Liu, Xiaohua Jiang, Yang Ren, Lishan Cui. Large elastic strains and ductile necking of W nanowires embedded in TiNi matrix [J]. J. Mater. Sci. Technol., 2021, 60(0): 56-60. |
[4] | Yongliang Li, Hua Yuan, Yanbing Chen, Xiaoyu Wei, Kunyan Sui, Yeqiang Tan. Application and exploration of nanofibrous strategy in electrode design [J]. J. Mater. Sci. Technol., 2021, 74(0): 189-202. |
[5] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[6] | Kun Ye, Bochong Wang, Anmin Nie, Kun Zhai, Fusheng Wen, Congpu Mu, Zhisheng Zhao, Jianyong Xiang, Yongjun Tian, Zhongyuan Liu. Broadband photodetector of high quality Sb2S3 nanowire grown by chemical vapor deposition [J]. J. Mater. Sci. Technol., 2021, 75(0): 14-20. |
[7] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[8] | Boda Zheng, Qingsheng Zhu, Yang Zhao. Fabrication of high-quality silver nanowire conductive film and its application for transparent film heaters [J]. J. Mater. Sci. Technol., 2021, 71(0): 221-227. |
[9] | Ruimei Yuan, Hejun Li, Xuemin Yin, Peipei Wang, Jinhua Lu, Leilei Zhang. Construction of multi-structures based on Cu NWs-supported MOF-derived Co oxides for asymmetric pseudocapacitors [J]. J. Mater. Sci. Technol., 2021, 65(0): 182-189. |
[10] | Yabin Hao, Minghe Fang, Chuan Xu, Zhe Ying, Han Wang, Rui Zhang, Hui-Ming Cheng, You Zeng. A graphene-laminated electrode with high glucose oxidase loading for highly-sensitive glucose detection [J]. J. Mater. Sci. Technol., 2021, 66(0): 57-63. |
[11] | Fuqiang Wan, Wenxuan Wang, Zhaoyong Zou, Hao Xie, Hang Ping, Zhengyi Fu. Bioprocess-inspired preparation of silica with varied morphologies and potential in lithium storage [J]. J. Mater. Sci. Technol., 2021, 72(0): 61-68. |
[12] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
[13] | Yan Xing, Jing Cheng, Jian Wu, Mengfei Zhang, Xing-ao Li, Wei Pan. Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater [J]. J. Mater. Sci. Technol., 2020, 45(0): 84-91. |
[14] | Lei Liu, Feifei Lu, Sihao Xia, Yu Diao, Jian Tian. Improved electron capture capability of field-assisted exponential-doping GaN nanowire array photocathode [J]. J. Mater. Sci. Technol., 2020, 42(0): 54-62. |
[15] | Lei Liu, Feifei Lu, Jian Tian, Xingyue Zhangyang, Zhisheng Lv. High-efficient electron collection capability of graded Al compositional GaN nanowire arrays cathode [J]. J. Mater. Sci. Technol., 2020, 58(0): 86-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||