J. Mater. Sci. Technol. ›› 2020, Vol. 50: 192-203.DOI: 10.1016/j.jmst.2020.02.036
• Research Article • Previous Articles Next Articles
Jing Fana,b, Wei Raoc, Junwei Qiaoa,b,*(), P.K. Liaw4, Daniel Şopu5,6, Daniel Kiener7, Jürgen Eckert6,7, Guozheng Kangc, Yucheng Wua,**(
)
Received:
2019-12-21
Accepted:
2020-02-20
Published:
2020-08-01
Online:
2020-08-10
Contact:
Junwei Qiao,Yucheng Wu
Jing Fan, Wei Rao, Junwei Qiao, P.K. Liaw, Daniel Şopu, Daniel Kiener, Jürgen Eckert, Guozheng Kang, Yucheng Wu. Achieving work hardening by forming boundaries on the nanoscale in a Ti-based metallic glass matrix composite[J]. J. Mater. Sci. Technol., 2020, 50: 192-203.
Zone | Ti | Zr | Ni | Ta | Be |
---|---|---|---|---|---|
Composite | 41 | 32 | 6 | 7 | 14 |
Matrix | 34.8 ± 0.2 | 47.2 ± 2.1 | 12.4 ± 1.8 | 5.6 ± 0.2 | - |
Dendrites | 47.2 ± 0.5 | 34.8 ± 2.0 | 4.0 ± 1.7 | 14.0 ± 0.4 | - |
Table 1 Contents of different elements in the present Ti-based MGMCs (in at.%).
Zone | Ti | Zr | Ni | Ta | Be |
---|---|---|---|---|---|
Composite | 41 | 32 | 6 | 7 | 14 |
Matrix | 34.8 ± 0.2 | 47.2 ± 2.1 | 12.4 ± 1.8 | 5.6 ± 0.2 | - |
Dendrites | 47.2 ± 0.5 | 34.8 ± 2.0 | 4.0 ± 1.7 | 14.0 ± 0.4 | - |
Fig. 2. TEM images of the as-cast sample: (a) bright-field TEM image, selected-area electron diffraction (SAED) patterns of the dendrites and the matrix are presented in (b) and (c), respectively, (d) the HRTEM image of the interface.
Fig. 4. True stress-true strain curve of the composite (a), the work-hardening rate curve is shown in the inset. (b) SEM images of a sample after fracture.
Fig. 5. TEM images of a sample after fracture: (a) bright-field image, (b) dark-field image, (c) HRTEM image of the interface, (d) a shear band in the matrix, (e) and (f) HRTEM images of the dendrites.
Matrix | Em (GPa) | νm | α | ξ0 | χ | v* (??) | T (k) | t0-1 (s-1) | τ0 (MPa) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
109.3 | 0.33 | 0.8 | 0.0465 | 1.25 | 20 | 300 | 324 | 414 | |||||||||||||||
Dendrites | Ed (GPa) | νd | M1,3 | M2 | b (nm) | α | dp (μm) | ψ | ε˙0 (s-1) | k20 | n | NB | ξ (nm) | m0 | σy1,2 (MPa) | σy3 (MPa) | |||||||
67 | 0.36 | 1.0 | 2.4 | 0.256 | 0.33 | 2.5 | 0.2 | 1 | 18.5 | 12.5 | 45 | 35 | 10 | 900 | 1200 |
Table 2 Material parameters used for the FEM model of the current MGMCs.
Matrix | Em (GPa) | νm | α | ξ0 | χ | v* (??) | T (k) | t0-1 (s-1) | τ0 (MPa) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
109.3 | 0.33 | 0.8 | 0.0465 | 1.25 | 20 | 300 | 324 | 414 | |||||||||||||||
Dendrites | Ed (GPa) | νd | M1,3 | M2 | b (nm) | α | dp (μm) | ψ | ε˙0 (s-1) | k20 | n | NB | ξ (nm) | m0 | σy1,2 (MPa) | σy3 (MPa) | |||||||
67 | 0.36 | 1.0 | 2.4 | 0.256 | 0.33 | 2.5 | 0.2 | 1 | 18.5 | 12.5 | 45 | 35 | 10 | 900 | 1200 |
Fig. 8. FEM results obtained at the strain of 3% and 7%: (a) and (d) the evolution of free volumes within the glassy matrix, (b) and (e) the dislocation density in the dendrites, (c) and (f) the local stress distribution.
Fig. 9. FEM analysis for another two dendrites: (a) stress-strain curves of different dendrites, (b) stress-strain curves of MGMCs with the corresponding dendrites in (a).
Fig. 10. Evolution of free volumes in the glassy matrix, dislocation density in the dendrites, and local stress distribution at the strain of 5% for three MGMCs: (a), (b), and (c) MGMC 1, (d), (e) and (f) MGMC 2, (g), (h), and (i) MGMC 3.
Fig. 11. Calculated true stress-true strain curves of MGMCs with different dislocation densities in the dendrites as obtained by FEM, the inset corresponds to work-hardening curves.
Fig. 12. Free volume density and maps of strain contours of the MGMCs with different defect densities in the dendrites at a true strain of 5%: (a), (b) and (c) 1 × 107/m2, (d), (e) and (f) 5 × 1014/m2, (g), (h) and (i) 1.5 × 1015/m2.
Type of specimen | Matrix (GPa) | Dendrites (GPa) |
---|---|---|
As-cast | 6.96 ± 0.21 | 4.58 ± 0.45 |
Deformed | 6.18 ± 0.13 | 6.22 ± 0.27 |
Table 3 Hardness of the glass matrix and the dendrites before and after tensile testing measured by nanoindentation.
Type of specimen | Matrix (GPa) | Dendrites (GPa) |
---|---|---|
As-cast | 6.96 ± 0.21 | 4.58 ± 0.45 |
Deformed | 6.18 ± 0.13 | 6.22 ± 0.27 |
[1] |
W.L. Johnson, MRS Bull. 24 1999 42-56.
DOI URL |
[2] |
W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R 44 (2004) 45-89.
DOI URL |
[3] |
C. Schuh, T. Hufnagel, U. Ramamurty, Acta Mater. 55 2007 4067-4109.
DOI URL |
[4] |
J.W. Qiao, H. Jia, P.K. Liaw, Mater. Sci. Eng. R 100 (2016) 1-69.
DOI URL |
[5] |
Y.Y. Liu, P.Z. Liu, J.J. Li, P.K. Liaw, F. Spieckermann, D. Kiener, J.W. Qiao, Int. J. Plast. 105 2018 225-238.
DOI URL |
[6] |
Z. Liu, R. Li, G. Liu, W. Su, H. Wang, Y. Li, M. Shi, X. Luo, G. Wu, T. Zhang, Acta Mater. 60 2012 3128-3139.
DOI URL |
[7] |
Y. Wu, Y. Xiao, G. Chen, C.T. Liu, Z. Lu, Adv. Mater. 22 2010 2770-2773.
DOI URL PMID |
[8] |
Y.Y. Liu, J.J. Li, Z. Wang, X.H. Shi, J.W. Qiao, Y.C. Wu, Intermetallics 108 (2019) 72-76.
DOI URL |
[9] |
K.K. Song, S. Pauly, Y. Zhang, R. Li, S. Gorantla, N. Narayanan, U. Kühn, T. Gemming, J. Eckert, Acta Mater. 60 2012 6000-6012.
DOI URL |
[10] |
Y.S. Oh, C.P. Kim, S. Lee, N.J. Kim, Acta Mater. 59 2011 7277-7286.
DOI URL |
[11] |
L. Zhang, W.Q. Li, Z.W. Zhu, H.M. Fu, H. Li, Z.K. Li, H.W. Zhang, A.M. Wang, H.F. Zhang, J. Mater. Sci. Technol. 33 2017 708-711.
DOI URL |
[12] |
L. Zhang, R.L. Narayan, H.M. Fu, U. Ramamurty, W.R. Li, Y.D. Li, H.F. Zhang, Acta Mater. 168 2019 24-36.
DOI URL |
[13] |
F. Szuess, C.P. Kim, W.L. Johnson, Acta Mater. 49 2001 1507-1513.
DOI URL |
[14] |
J. Fan, J.W. Qiao, Z.H. Wang, W. Rao, G.Z. Kang, Sci. Rep. 7 2017 1877.
DOI URL PMID |
[15] |
W. Rao, J. Zhang, G.Z. Kang, C. Yu, H. Jiang, Int. J. Plast. 115 2019 238-267.
DOI URL |
[16] |
Y. Jiang, X. Shi, K. Qiu, Mater. Des. 77 2015 32-40.
DOI URL |
[17] |
W. Rao, J. Zhang, H. Jiang, G.Z. Kang, Mech. Mater. 103 2016 68-77.
DOI URL |
[18] |
C.C. Hays, C.P. Kim, W.L. Johnson, Phys. Rev. Lett. 84 1999, 2901-1904.
DOI URL PMID |
[19] |
L. Zhang, Z. Zhu, H. Fu, H. Li, H. Zhang, Mater. Sci. Eng. A 689 (2017) 404-410.
DOI URL |
[20] |
D. Banerjee, J.C. Williams, Acta Mater. 61 2013 844-879.
DOI URL |
[21] |
M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacques, F. Prima, Scripta Mater. 66 2012 749-752.
DOI URL |
[22] | G.E. Dieter, in: F.M. Robert (Ed.), Mechanical Metallurgy, McGraw-Hill, London, 1961, p. 290. |
[23] |
X. Li, R. Song, N. Zhou, J. Li, Scripta Mater. 154 2018 30-33.
DOI URL |
[24] |
C.L. Yang, Z.J. Zhang, P. Zhang, Z.F. Zhang, Acta Mater. 136 2017 1-10.
DOI URL |
[25] |
Z.F. Zhang, J. Eckert, L. Schultz, Acta Mater. 51 2003 1167-1179.
DOI URL |
[26] |
Y. Shao, K. Yao, M. Li, X. Liu, Appl. Phys. Lett. 103 2013, 171901.
DOI URL |
[27] |
H.M. Zhai, H.F. Wang, F. Liu, J. Alloys. Compd. 685 2016 322-330.
DOI URL |
[28] |
H. Zhai, Y. Xu, F. Zhang, Y. Ren, H. Wang, F. Liu, J. Alloys. Compd. 694 2017 1-9.
DOI URL |
[29] |
L.S. Tóth, Y. Estrin, R. Lapovok, C. Gu, Acta Mater. 58 2010 1782-1794.
DOI URL |
[30] |
W. Guo, E. Jägle, J. Yao, V. Maier, S. Korte-Kerzel, J.M. Schneider, D. Raabe, Acta Mater. 80 2014 94-106.
DOI URL |
[31] |
J.W. Qiao, J. Mater. Sci. Technol. 29 2013 685-701.
DOI URL |
[32] |
S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, K.U. Kainer, J. Homeyer, Acta Mater. 54 2006 549-562.
DOI URL |
[33] |
O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 2000 1391-1409.
DOI URL |
[34] |
B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 2018 283-362.
DOI URL |
[35] |
L. Ma, L. Wang, Z. Nie, F. Wang, Y. Xue, J. Zhou, T. Cao, Y. Wang, Y. Ren, Acta Mater. 128 2017 12-21.
DOI URL |
[36] |
V.S.A. Challa, X.L. Wan, M.C. Somani, L.P. Karjalainen, R.D.K. Misra, Scripta Mater. 86 2014 60-63.
DOI URL |
[37] |
K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, J. Lu, Acta Mater. 52 2004 4101-4110.
DOI URL |
[38] |
E.W. Huang, J. Qiao, B. Winiarski, W.J. Lee, M. Scheel, C.P. Chuang, P.K. Liaw, Y.C. Lo, Y. Zhang, M.D. Michiel, Sci. Rep. 4 2014 4394.
DOI URL PMID |
[39] |
F. Roters, D. Raabe, G. Gottstein, Acta Mater. 48 2000 4181-4189.
DOI URL |
[40] |
Y. Wang, J. Li, A.V. Hamza, T.W. Barbee, Proc. Natl. Acad. Sci. U. S. A. 104 2007 11155-11160.
DOI URL PMID |
[41] |
H. Bei, S. Xie, E.P. George, Phys. Rev. Lett. 96 2006, 105503.
DOI URL PMID |
[42] |
X.H. Sun, J.W. Qiao, Z.M. Jiao, Z.H. Wang, H.J. Yang, B.S. Xu, Sci. Rep. 5 2015 13964.
DOI URL PMID |
[43] |
D.P. Wang, S.L. Wang, J.Q. Wang, Corros. Sci. 59 2012 88-95.
DOI URL |
[44] |
W.H. Wang, Prog. Mater. Sci. 57 2012 487-656.
DOI URL |
[45] |
Z. Hashin, J. Mech. Phys. Solids. 11 1963 127-140.
DOI URL |
[46] |
S.H. Xia, J.T. Wang, Int. J. Plast. 26 2010 1442-1460.
DOI URL |
[47] |
W.L. Johnson, K. Samwer, Phys. Rev. Lett. 95 2005, 195501.
DOI URL PMID |
[48] |
J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, J. Alloys. Compd. 726 2017 885-895.
DOI URL |
[49] |
J.A. Kolodziejska, H. Kozachkov, K. Kranjc, A. Hunter, E. Marquis, W.L. Johnson, K.M. Flores, D.C. Hofmann, Sci. Rep. 6 2016 22563.
DOI URL PMID |
[50] |
J.C. Lee, Y.C. Kim, J.P. Ahn, H.S. Kim, S.H. Lee, B.J. Lee, Acta Mater. 52 2004 1525-1533.
DOI URL |
[51] |
L. Zhang, H.F. Zhang, W.Q. Li, T. Gemming, Z.W. Zhu, H.M. Fu, J. Eckert, S. Pauly, Scripta Mater. 125 2016 19-23.
DOI URL |
[1] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[2] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
[3] | Mohammad Sharear Kabir, Zhifeng Zhou, Zonghan Xie, Paul Munroe. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65(0): 108-117. |
[4] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[5] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[6] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[7] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
[8] | Timothy Alexander Listyawan, Hyunjong Lee, Nokeun Park, Unhae Lee. Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process [J]. J. Mater. Sci. Technol., 2020, 57(0): 123-130. |
[9] | L. Huang, Z.Q. Chen, P. Huang, X.K. Meng, F. Wang. Irradiation-induced homogeneous plasticity in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2020, 57(0): 70-77. |
[10] | Wenguang Zhu, Changsheng Tan, Ruoyu Xiao, Qiaoyan Sun, Jun Sun. Slip behavior of Bi-modal structure in a metastable β titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2020, 57(0): 188-196. |
[11] | Hongwang Zhang, Yiming Zhao, Yuhui Wang, Chunling Zhang, Yan Peng. On the microstructural evolution pattern toward nano-scale of an AISI 304 stainless steel during high strain rate surface deformation [J]. J. Mater. Sci. Technol., 2020, 44(0): 148-159. |
[12] | Longjun Wu, Zhengwang Zhu, Dingming Liu, Huameng Fu, Hong Li, Aimin Wang, Hongwei Zhang, Zhengkun Li, Long Zhang, Haifeng Zhang. Deformation behavior of a TiZr-based metallic glass composite containing dendrites in the supercooled liquid region [J]. J. Mater. Sci. Technol., 2020, 37(0): 64-70. |
[13] | Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models [J]. J. Mater. Sci. Technol., 2020, 36(0): 176-189. |
[14] | X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions [J]. J. Mater. Sci. Technol., 2019, 35(6): 972-981. |
[15] | Richard Jenkins, Shuo Yin, Barry Aldwell, Morten Meyer, Rocco Lupoi. New insights into the in-process densification mechanism of cold spray Al coatings: Low deposition efficiency induced densification [J]. J. Mater. Sci. Technol., 2019, 35(3): 427-431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||