J. Mater. Sci. Technol. ›› 2020, Vol. 47: 10-19.DOI: 10.1016/j.jmst.2020.02.008
• Research Article • Previous Articles Next Articles
Yanan Pua,1, Wenwen Doua,d,*,1(), Tingyue Gub, Shiya Tangc, Xiaomei Hana, Shougang Chena,*(
)
Received:
2019-10-08
Revised:
2019-12-11
Accepted:
2020-01-07
Published:
2020-06-15
Online:
2020-06-24
Contact:
Wenwen Dou,Shougang Chen
About author:
1These authors contributed equally to this work.
Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47: 10-19.
Parameter | Condition |
---|---|
P. aeruginosa | PAO1 strain |
Culture medium | Tryptone 10 g |
(LB-NO3 medium) | Yeast extract 5 g |
NaCl 5 g | |
KNO3 10 g | |
Sterile seawater 1 L | |
Oxygen scavenger Temperature | 100 ppm L-cysteine 37 ℃ |
Initial pH | 7.2 ± 0.1 |
Incubation time | 7 d, 14 d |
Temperature | 37 °C |
Coupon material | Cu |
Table 1 Experimental conditions for studying corrosion behavior of Cu induced by P. aeruginosa under anaerobic condition.
Parameter | Condition |
---|---|
P. aeruginosa | PAO1 strain |
Culture medium | Tryptone 10 g |
(LB-NO3 medium) | Yeast extract 5 g |
NaCl 5 g | |
KNO3 10 g | |
Sterile seawater 1 L | |
Oxygen scavenger Temperature | 100 ppm L-cysteine 37 ℃ |
Initial pH | 7.2 ± 0.1 |
Incubation time | 7 d, 14 d |
Temperature | 37 °C |
Coupon material | Cu |
Fig. 1. P. aeruginosa planktonic cell count (A) during the 14 d incubation, and sessile cell count (B) on Cu surface after 1, 3, 7 and 14 d incubation in 125 mL anaerobic vials with 50 mL broth.
Fig. 3. SEM images of P. aeruginosa biofilms and corrosion products on Cu coupons after 7 d incubation (A), and after 14 d incubation (B) in anaerobic vials.
Fig. 4. High-resolution XPS spectra of C 1s (A), Ca 2p (B), Mg 1s (C), O 1s (D), N 1s (E) and Cu 2p (F) of Cu coupons after 14 d immersion in P. aeruginosa broth.
Valence state | Substrate | Binding energy (eV) | Proposed component | % |
---|---|---|---|---|
C 1 s | Cu | 284.6 eV | C—C | 79.28 |
285.9 eV | C—O—C | 15.59 | ||
288.3 eV | CO32- | 5.13 | ||
Ca 2p | Cu | 347.3 eV | CaCO3 | 44.50 |
351.1 eV | CaCO3 | 55.50 | ||
Mg 1 s | Cu | 1304.3 eV | MgCO3 | 100 |
O 1 s | Cu | 532.6 eV | OH- | 50.33 |
531.7 eV | CO32- | 26.93 | ||
533.0 eV | H2O | 17.81 | ||
530.7 eV | O2- | 1.92 | ||
N 1 s | Cu | 399.6 eV | NH3 | 100 |
Cu 2p | Cu | 932.8 eV | Cu2O | 73.06 |
933.7 eV | CuO | 26.94 |
Table 2 Fitting parameters (valence state and binding energy of the elements, and the atomic percentage of each element) for C 1s, Ca 2p, Mg 1s, O 1s, N 1s and Cu 2p derived from XPS spectra in Fig. 4.
Valence state | Substrate | Binding energy (eV) | Proposed component | % |
---|---|---|---|---|
C 1 s | Cu | 284.6 eV | C—C | 79.28 |
285.9 eV | C—O—C | 15.59 | ||
288.3 eV | CO32- | 5.13 | ||
Ca 2p | Cu | 347.3 eV | CaCO3 | 44.50 |
351.1 eV | CaCO3 | 55.50 | ||
Mg 1 s | Cu | 1304.3 eV | MgCO3 | 100 |
O 1 s | Cu | 532.6 eV | OH- | 50.33 |
531.7 eV | CO32- | 26.93 | ||
533.0 eV | H2O | 17.81 | ||
530.7 eV | O2- | 1.92 | ||
N 1 s | Cu | 399.6 eV | NH3 | 100 |
Cu 2p | Cu | 932.8 eV | Cu2O | 73.06 |
933.7 eV | CuO | 26.94 |
Incubation (d) | [NH3] in headspace (ppm) (v/v) | Total pressure in headspace (bar) | NH3 partial pressure in headspace (bar) | [NH3] in liquid phase (M) | [NH4+] in liquid phase (M) |
---|---|---|---|---|---|
3 | 1.33 | 1.19 | 1.59 × 10-6 | 2.75 × 10-3 | 2.19 × 10-4 |
7 | 1.97 | 1.43 | 2.81 × 10-6 | 4.86 × 10-3 | 2.91 × 10-4 |
14 | 1.95 | 1.42 | 2.76 × 10-6 | 4.78 × 10-3 | 2.89 × 10-4 |
Table 3 [NH3] and [NH4+] in liquid phase after the 3 d, 7 d and 14 d incubation with P. aeruginosa.
Incubation (d) | [NH3] in headspace (ppm) (v/v) | Total pressure in headspace (bar) | NH3 partial pressure in headspace (bar) | [NH3] in liquid phase (M) | [NH4+] in liquid phase (M) |
---|---|---|---|---|---|
3 | 1.33 | 1.19 | 1.59 × 10-6 | 2.75 × 10-3 | 2.19 × 10-4 |
7 | 1.97 | 1.43 | 2.81 × 10-6 | 4.86 × 10-3 | 2.91 × 10-4 |
14 | 1.95 | 1.42 | 2.76 × 10-6 | 4.78 × 10-3 | 2.89 × 10-4 |
Fig. 7. Pit distributions on Cu coupons (after removing biofilms and corrosion products): (A) after immersion in abiotic control medium for 14 d, and in P. aeruginosa broth for 7 d (B) and 14 d (C) in anaerobic vials.
Fig. 8. 3D Pitting morphologies and maximum pit depths measured under CLSM on Cu coupons: after immersion in abiotic control medium for 14 d (A, A'), and in P. aeruginosa broth for 7 d (B, B') and 14 d (C, C') in anaerobic vials.
Fig. 9. OCP curves of Cu during 14 d immersion in abiotic control medium and in P. aeruginosa broth in 450 mL anaerobic vials with 200 mL culture medium.
Fig. 11. Nyquist and Bode plots of Cu during 14 d immersion in abiotic control medium (A, B) and in P. aeruginosa broth (C, D) (For comparation, the Nyquist and Bode plots of Cu after 14 d immersion in abiotic control medium is also showed in C and D).
Incubation (d) | Rs (Ω cm2) | Ydl (Ω-1 cm-2 sn) | ndl | Rct (kΩ cm2) |
---|---|---|---|---|
1 | 5.2 | 0.000082 | 0.85 | 53.7 |
3 | 6.3 | 0.000077 | 0.84 | 55.3 |
7 | 5.0 | 0.00012 | 0.82 | 58.8 |
14 | 6.4 | 0.000089 | 0.81 | 58.7 |
Table 4 EIS parameters for Cu immersed in abiotic culture medium in anaerobic glass cell.
Incubation (d) | Rs (Ω cm2) | Ydl (Ω-1 cm-2 sn) | ndl | Rct (kΩ cm2) |
---|---|---|---|---|
1 | 5.2 | 0.000082 | 0.85 | 53.7 |
3 | 6.3 | 0.000077 | 0.84 | 55.3 |
7 | 5.0 | 0.00012 | 0.82 | 58.8 |
14 | 6.4 | 0.000089 | 0.81 | 58.7 |
Incubation (d) | Rs (Ω cm2) | Yb (Ω-1 cm-2sn) | nb | Rb (kΩ cm2) | Ydl (Ω-1 cm-2 sn) | ndl | Rct (kΩ cm2) |
---|---|---|---|---|---|---|---|
1 | 6.1 | 0.00018 | 0.90 | 2.4 | 0.00018 | 0.91 | 9.8 |
3 | 4.4 | 0.00033 | 0.78 | 10.6 | 0.00030 | 0.75 | 15.7 |
7 | 5.2 | 0.00017 | 0.74 | 3.5 | 0.00230 | 0.99 | 14.8 |
14 | 5.0 | 0.00037 | 0.77 | 12.8 | 0.00038 | 0.83 | 15.8 |
Table 5 EIS parameters for Cu immersed in culture medium inoculated with P. aeruginosa in anaerobic glass cell.
Incubation (d) | Rs (Ω cm2) | Yb (Ω-1 cm-2sn) | nb | Rb (kΩ cm2) | Ydl (Ω-1 cm-2 sn) | ndl | Rct (kΩ cm2) |
---|---|---|---|---|---|---|---|
1 | 6.1 | 0.00018 | 0.90 | 2.4 | 0.00018 | 0.91 | 9.8 |
3 | 4.4 | 0.00033 | 0.78 | 10.6 | 0.00030 | 0.75 | 15.7 |
7 | 5.2 | 0.00017 | 0.74 | 3.5 | 0.00230 | 0.99 | 14.8 |
14 | 5.0 | 0.00037 | 0.77 | 12.8 | 0.00038 | 0.83 | 15.8 |
Sample | icorr (A cm-2) | Ecorr (V) vs. SCE | βc (V dec-1) |
---|---|---|---|
After 7 d in the abiotic medium | 0.68 × 10-7 | -0.524 | -0.148 |
After 14 d in the abiotic medium | 0.53 × 10-7 | -0.485 | -0.118 |
After 7 d in the P. aeruginosa broth | 4.74 × 10-7 | -0.797 | -0.228 |
After 14 d in the P. aeruginosa broth | 0.89 × 10-7 | -0.704 | -0.114 |
Table 6 Tafel parameters for Cu after incubation at 37 °C for 14 d.
Sample | icorr (A cm-2) | Ecorr (V) vs. SCE | βc (V dec-1) |
---|---|---|---|
After 7 d in the abiotic medium | 0.68 × 10-7 | -0.524 | -0.148 |
After 14 d in the abiotic medium | 0.53 × 10-7 | -0.485 | -0.118 |
After 7 d in the P. aeruginosa broth | 4.74 × 10-7 | -0.797 | -0.228 |
After 14 d in the P. aeruginosa broth | 0.89 × 10-7 | -0.704 | -0.114 |
[1] |
X. Li, D. Zhang, Z. Liu, Z. Li, C. Du, C. Dong, Nature 527 (2015) 441.
DOI URL PMID |
[2] |
Y.Z. Li, X. Wang, G.A. Zhang, Corros. Sci. (2019).
DOI URL PMID |
[3] | G.H. Koch, M.P. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer, Corrosion Cost and Preventive Strategies in the United States, 2002. |
[4] |
B. Hou, X. Li, X. Ma, C. Du, D. Zhang, M. Zheng, W. Xu, D. Lu, F. Ma, NPJ Mater. Degrad. 1 (2017) 1-9.
DOI URL |
[5] | R.H. Gaines, Ind. Eng. Chem. 2 (1910) 128-130. |
[6] | R. Javaherdashti, Anti-Corros. Methods Mater. 46 (1999) 173-180. |
[7] | H. Liu, T. Gu, G. Zhang, Y. Cheng, H. Wang, H. Liu, Corros. Sci. 102 (2016) 93-102. |
[8] | H. Wang, L.-K. Ju, H. Castaneda, G. Cheng, B.-m. Zhang, Newby Corros. Sci. 89 (2014) 250-257. |
[9] | H. Liu, Y. Frank Cheng, Electrochim. Acta 253 (2017) 368-378. |
[10] |
Z. Guo, T. Liu, Y.F. Cheng, N. Guo, Y. Yin, Colloids Surf. B Biointerfaces 157 (2017) 157-165.
URL PMID |
[11] | R.A. Forsyth, Respecting the Future, 2010, pp. 932-939. |
[12] | C.A.H. Wolzogen Kühr, L.S.Vd. Vlugt, Water 18 (1934) 147-165. |
[13] |
R. King, J. Miller, Nature 233 (1971) 491-492.
DOI URL PMID |
[14] | I. Beech, C.S. Cheung, Int. Biodeter. Biodegr. 35 (1995) 59-72. |
[15] | M. de Romero, The mechanism of SRB action in MIC, based on sulfide corrosion and iron sulfide corrosion products, in: Corrosion, 2009, pp. 2005, Paper No. 05481, Houston, TX. |
[16] | T. Gu, R. Jia, T. Unsal, D. Xu, J. Mater. Sci. Technol. 35 (2018) 631-636. |
[17] | T. Gu, K. Zhao, S. Nesic, A Practical Mechanistic Model for MIC Based on a Biocatalytic Cathodic Sulfate Reduction Theory, Corrosion, 2009, Paper No. 09390, Atlanta, GA, March 2009. |
[18] |
Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, J. Mater. Sci. Technol. 34 (2018) 1713-1718.
DOI URL |
[19] | Y. Huang, E. Zhou, C. Jiang, R. Jia, S. Liu, D. Xu, T. Gu, F. Wang, Elecrochem. Commun. 94 (2018) 9-13. |
[20] |
H.-Y. Tang, D.E. Holmes, T. Ueki, P.A. Palacios, D.R. Lovley, Mbio 10 (2019) e00303-00319.
DOI URL PMID |
[21] | M. Saleem Khan, Z. Li, K. Yang, D. Xu, C. Yang, D. Liu, Y. Lekbach, E. Zhou, P. Kalnaowakul, J. Mater. Sci. Technol. 35 (2019) 216-222. |
[22] | H. Li, C. Yang, E. Zhou, C. Yang, H. Feng, Z. Jiang, D. Xu, T. Gu, K. Yang, J. Mater. Sci. Technol. 33 (2017) 1596-1603. |
[23] | T. Wu, M. Yan, J. Xu, Y. Liu, C. Sun, W. Ke, Corros. Sci. 108 (2016) 160-168. |
[24] | T. Liu, Y.F. Cheng, J. Alloys Compd. 729 (2017) 180-188. |
[25] | H. Qian, D. Zhang, Y. Lou, Z. Li, D. Xu, C. Du, X. Li, Corros. Sci. 145 (2018) 151-161. |
[26] | A. Fateh, M. Aliofkhazraei A.R.J. A.J.o.C. Rezvanian, S1878535217301090. |
[27] |
B. Jia, Y. Mei, L. Cheng, J. Zhou, L. Zhang, ACS Appl. Mater. Inter. 4 (2012) 2897-2902.
DOI URL |
[28] |
D. Liu, R. Jia, D. Xu, H. Yang, Y. Zhao, Ms. Khan, S. Huang, J. Wen, K. Yang, T. Gu, J. Mater. Sci. Technol. (2019).
DOI URL PMID |
[29] | F. Ma, J. Li, Z. Zeng, Y. Gao, J. Mater. Sci. Technol. 35 (2019) 448-459. |
[30] | P. Li, Y. Zhao, Y. Liu, Y. Zhao, D. Xu, C. Yang, T. Zhang, T. Gu, K. Yang, J. Mater, J. Mater. Sci. Technol. 33 (2017) 723-727. |
[31] | S. Chen, D. Zhang, Corros. Sci. 136 (2018) 275-284. |
[32] | W. Dou, R. Jia, P. Jin, J. Liu, S. Chen, T. Gu, Corros. Sci. 144 (2018) 237-248. |
[33] |
W. Dou, J. Liu, W. Cai, D. Wang, R. Jia, S. Chen, T. Gu, Corros. Sci. 150 (2019) 258-267.
DOI URL |
[34] | E. Zhou, H. Li, C. Yang, J. Wang, D. Xu, D. Zhang, T. Gu, Int. Biodeter. Biodegr. 127 (2018) 1-9. |
[35] | Y. Zhao, E. Zhou, D. Xu, Y. Yang, Y. Zhao, T. Zhang, T. Gu, K. Yang, F. Wang, Corros. Sci. 143 (2018) 281-291. |
[36] | J. Liu, R. Jia, E. Zhou, Y. Zhao, W. Dou, D. Xu, K. Yang, T. Gu, Int. Biodeter. Biodegr. 132 (2018) 132-138. |
[37] | R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Corros. Sci. 127 (2017) 1-9. |
[38] | J. Xu, R. Jia, D. Yang, C. Sun, T. Gu, J. Mater. Sci. Technol. 35 (2019) 109-117. |
[39] | L. Wang, Y. Dou, S. Han, J. Wu, Z. Cui, Appl. Surf. Sci. 504(2020). |
[40] | C. Man, C. Dong, Z. Cui, K. Xiao, Q. Yu, X. Li, Appl. Surf. Sci. 427 (2018) 763-773. |
[41] | A. G102-89, ASTM International. (1999). |
[42] | P.B. Raja, M. Fadaeinasab, A.K. Qureshi, A.A. Rahim, H. Osman, M. Litaudon, K. Awang, Ind. Eng. Chem. Res. 52 (2013) 10582-10593. |
[43] |
D.J. Hassett, J. Cuppoletti, B. Trapnell, S.V. Lymar, J.J. Rowe, S. Sun Yoon, G.M. Hilliard, K. Parvatiyar, M.C. Kamani, D.J. Wozniak, S.-H. Hwang, T.R. McDermott, U.A. Ochsner, Adv. Drug Deliv. Rev. 54 (2002) 1425-1443.
DOI URL PMID |
[44] | D. Xu, Y. Li, F. Song, T. Gu, Corros. Sci. 77 (2013) 385-390. |
[45] |
L.P.T.M. Zevenhuizen, J. Dolfing, E.J. Eshuis, I.J. Scholten-Koerselman, Microb. Ecol. 5 (1979) 139-146.
DOI URL PMID |
[46] |
R. Jia, D. Yang, D. Xu, T. Gu, Bioelectrochemistry 118 (2017) 38-46.
DOI URL PMID |
[47] | X. Du, Y. Su, J. Li, L. Qiao, W. Chu, Corros. Sci. 60 (2012) 69-75. |
[1] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[2] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[3] | Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66(0): 177-185. |
[4] | Na Guo, Yanan Wang, Xinrui Hui, Qianyu Zhao, Zhenshun Zeng, Shuai Pan, Zhangwei Guo, Yansheng Yin, Tao Liu. Marine bacteria inhibit corrosion of steel via synergistic biomineralization [J]. J. Mater. Sci. Technol., 2021, 66(0): 82-90. |
[5] | Hong Hong, Jiyong Hu, Kyoung-Sik Moon, Xiong Yan, Ching-ping Wong. Rheological properties and screen printability of UV curable conductive ink for flexible and washable E-textiles [J]. J. Mater. Sci. Technol., 2021, 67(0): 145-155. |
[6] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[7] | Lei Luo, Liangshun Luo, Robert O. Ritchie, Yanqing Su, Binbin Wang, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 61(0): 100-113. |
[8] | Dandan Wang, Junping Ju, Shuang Wang, Yeqiang Tan. Research progress on the luminescence of biomacromolecules [J]. J. Mater. Sci. Technol., 2021, 76(0): 60-75. |
[9] | Yanhui Li, Xingjie Jia, Wei Zhang, Yan Zhang, Guoqiang Xie, Zhiyong Qiu, Junhua Luan, Zengbao Jiao. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 65(0): 171-181. |
[10] | Jing Wang, Lu Han, Xiaohu Li, Dongguang Liu, Laima Luo, Yuan Huang, Yongchang Liu, Zumin Wang. Supermodulus effect by grain-boundary wetting in nanostructured multilayers [J]. J. Mater. Sci. Technol., 2021, 65(0): 202-209. |
[11] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[12] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[13] | Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting [J]. J. Mater. Sci. Technol., 2021, 74(0): 11-20. |
[14] | Zhengkun Xie, Xiaowei An, Zhijun Wu, Xiyan Yue, Jiajia Wang, Xiaogang Hao, Abuliti Abudula, Guoqing Guan. Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 119-127. |
[15] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||