J. Mater. Sci. Technol. ›› 2020, Vol. 46: 107-113.DOI: 10.1016/j.jmst.2019.11.035
• Research Article • Previous Articles Next Articles
Peipei Maa, Chunhui Liua,b,*(), Qiuyu Chenb, Qing Wanga,b, Lihua Zhana,b, Jianjun Lib
Received:
2019-09-25
Revised:
2019-11-09
Accepted:
2019-11-16
Published:
2020-06-01
Online:
2020-06-19
Contact:
Chunhui Liu
Peipei Ma, Chunhui Liu, Qiuyu Chen, Qing Wang, Lihua Zhan, Jianjun Li. Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy[J]. J. Mater. Sci. Technol., 2020, 46: 107-113.
Fig. 1. (a) Vickers microhardness versus aging time at different ageing temperatures in Al-Zn-Mg-Cu alloy with and without pre-NA; (b) the maximum hardness acquired at various ageing temperatures in samples with and without NA.
Fig. 2. (a) The maximum yield strength acquired at various ageing temperatures in samples with and without NA; (b) engineering stress-strain curves of the samples aged at 165 °C and 180 °C.
Fig. 3. HAADF-STEM images of plate-like hardening precipitates in the grain interior of samples peak-aged at 120 °C (a, d), 165 °C (b, e) and 180 °C (c, f). The upper images are for directly aged samples (a-c) while the lower ones for naturally pre-aged samples (d-f). The inset in (a) is the selected area diffraction pattern (SADP). (g) High-resolution HAADF-STEM images of typical precipitates varying in internal structures in the samples peak-aged at 120 °C, 165 °C and 180 °C, respectively. The bright dots correspond to Zn columns expected for the η2 structure whose unit cell is represented by the rectangular box. Microstructures were viewed along <112>Al.
Fig. 4. HAADF-STEM images showing precipitates near the grain boundaries of samples peak-aged at (a, d) 120 °C, (b, e) 165 °C and (c, f) 180 °C. The upper images are for directly aged samples (a-c) while the lower ones for naturally pre-aged samples (d-f). The dashed arrows point to pores left by particles dropped or dissolved during TEM specimen preparation. Microstructure for one of the neighboring grains was viewed along <110>Al.
Fig. 5. HAADF-STEM characterization of the precipitation in the vicinity of grain boundaries: (a) sub-/grain structures highlighting the high density of grain boundaries; (b) the formation of precipitate-sparse zone (PSZ) containing gradient nano-precipitates near grain boundary in a region boxed in (a); (c) the change of precipitate size with the distance from the grain boundary in the PSZ.
Fig. 6. Grain size dependent precipitation in the samples directly aged at 180 °C: (a) HAADF-STEM images showing precipitates within a grain with a grain boundary spacing of ~653 nm; (b) bright-field TEM images showing precipitates within a grain with a grain boundary spacing of ~302 nm; (c) upturn fraction of the PFZ + PSZ over the entire grain with the decline of the GB spacing. This fraction is represented by the ratio for the length of PFZ + PSZ over the GB spacing.
[1] | A. Azarniya, A.K. Taheri, K.K. Taheri, J. Alloys Compd. 781(2019) 945-983. |
[2] |
W. Xu, Y. Luo, W. Zhang, M. Fu, J. Mater. Sci. Technol. 34(2018) 173-184.
DOI URL |
[3] |
K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62(2014) 141-155.
DOI URL |
[4] |
T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, E.J. Lavernia, Acta Mater. 61(2013) 2163-2178.
DOI URL |
[5] | H. Degischer, W. Lacom, A. Zahra, C. Zahra, Z. Metallk. 71(1980) 231-238. |
[6] |
L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, Acta Mater. 49(2001) 3443-3451.
DOI URL |
[7] | T.F. Chung, Y.L. Yang, M. Shiojiri, C.N. Hsiao, W.C. Li, C.S. Tsao, Z. Shi, J. Lin, J.R. Yang, Acta Mater. 174(2019) 351-368. |
[8] |
A. Bendo, K. Matsuda, S. Lee, K. Nishimura, N. Nunomura, H. Toda, M. Yamaguchi, T. Tsuru, K. Hirayama, K. Shimizu, H. Gao, K. Ebihara, M. Itakura, T. Yoshida, S. Murakami, J. Mater. Sci. 53(2017) 4598-4611.
DOI URL |
[9] |
C.D. Marioara, W. Lefebvre, S.J. Andersen, J. Friis, J. Mater. Sci. 48(2013) 3638-3651.
DOI URL |
[10] |
F. Cao, J. Zheng, Y. Jiang, B. Chen, Y. Wang, T. Hu, Acta Mater. 164(2019) 207-219.
DOI URL |
[11] | M. de Hass, J.T.M. De Hosson, Scr. Mater. 44(2001) 281-286. |
[12] | H. Jiang, R.G. Faulkner, Acta Mater. 44(1996) 1857-1864. |
[13] |
T. Marlaud, B. Malki, C. Henon, A. Deschamps, B. Baroux, Corros. Sci. 53(2011) 3139-3149.
DOI URL |
[14] |
H. Zhao, F. De Geuser, A. Kwiatkowski da Silva, A. Szczepaniak, B. Gault, D. Ponge, D. Raabe, Acta Mater. 156(2018) 318-329.
DOI URL |
[15] |
J.H. Zheng, J. Lin, J. Lee, R. Pan, C. Li, C.M. Davies, Int. J. Plasticity 106 (2018) 31-47.
DOI URL |
[16] |
M. Navaser, M. Atapour, J. Mater, Sci. Technol. 33(2017) 155-165.
DOI URL |
[17] | Y.L. Wang, H.C. Jiang, Z.M. Li, D.S. Yan, D. Zhang, L.J. Rong, J. Mater, Sci. Technol. 34(2018) 1250-1257. |
[18] | M.A. Krishnan, V.S. Raja, S. Shukla, S.M. Vaidya, Metall. Mater. Trans. A 49 (2018) 2487-2498. |
[19] |
J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 460-461(2007) 77-85.
DOI URL |
[20] |
J.A. Österreicher, G. Kirov, S. S.A.Gerstl, E. Mukeli, F. Grabner, M. Kumar, J. Alloys Compd. 740(2018) 167-173.
DOI URL |
[21] |
C.H. Liu, Y.X. Lai, J.H. Chen, G.H. Tao, L.M. Liu, P.P. Ma, Scr. Mater. 115(2016) 150-154.
DOI URL |
[22] |
C.H. Liu, P.P. Ma, L.H. Zhan, M.H. Huang, J.J. Li, Scr. Mater. 155(2018) 68-72.
DOI URL |
[23] |
P.P. Ma, L.H. Zhan, C.H. Liu, Q. Wang, H. Li, D.B. Liu, Z.G. Hu, J. Alloys Compd. 790(2019) 8-19.
DOI URL |
[24] |
S. Pogatscher, E. Kozeschnik, H. Antrekowitsch, M. Werinos, S. S.A.Gerstl, J.F. Löffler, P.J. Uggowitzer, Scr. Mater. 89(2014) 53-56.
DOI URL |
[25] |
M. Madanat, M. Liu, J. Banhart, Acta Mater. 159(2018) 163-172.
DOI URL |
[26] |
K. Omer, A. Abolhasani, S. Kim, T. Nikdejad, C. Butcher, M. Wells, S. Esmaeili, M. Worswick, J. Mater, Process. Technol. 257(2018) 170-179.
DOI URL |
[27] |
B. Cai, B. Adams, T. Nelson, Acta Mater. 55(2007) 1543-1553.
DOI URL |
[28] |
T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58(2010) 4814-4826.
DOI URL |
[29] | H. Jiang, R.G. Faulkner, Acta Mater. 44(1996) 1865-1871. |
[30] | J. Banhart, M.D.H. Lay, C.S.T. Chang, A.J. Hill, Phys. Rev. B 83 (2010) 287-292. |
[31] | H.S. Zurob, H. Seyedrezai, Scr. Mater. 61(2009) 141-144. |
[1] | Hongliang Su, Liang Huang, Jianjun Li, Wang Xiao, Hui Zhu, Fei Feng, Hongwei Li, Siliang Yan. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings [J]. J. Mater. Sci. Technol., 2021, 70(0): 125-135. |
[2] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[3] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[4] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[5] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[6] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[7] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[8] | P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect [J]. J. Mater. Sci. Technol., 2021, 73(0): 91-100. |
[9] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[10] | Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2020, 43(0): 1-13. |
[11] | Ying-Jun Gao, Qian-Qian Deng, Zhe-yuan Liu, Zong-Ji Huang, Yi-Xuan Li, Zhi-Rong Luo. Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain: Atomistic and continuum modeling [J]. J. Mater. Sci. Technol., 2020, 49(0): 236-250. |
[12] | H.T. Jeong, W.J. Kim. Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 190-202. |
[13] | Z.Y. Zhang, L.X. Sun, N.R. Tao. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48(0): 18-22. |
[14] | C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates [J]. J. Mater. Sci. Technol., 2020, 41(0): 105-116. |
[15] | Qiang Lu, Kai Li, Haonan Chen, Mingjun Yang, Xinyue Lan, Tong Yang, Shuhong Liu, Min Song, Lingfei Cao, Yong Du. Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium [J]. J. Mater. Sci. Technol., 2020, 41(0): 139-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||