J. Mater. Sci. Technol. ›› 2020, Vol. 43: 208-219.DOI: 10.1016/j.jmst.2020.01.013
• Research Article • Previous Articles Next Articles
Beiping Zhou, Wencai Liu*(), Guohua Wu*(
), Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding
Received:
2019-06-20
Revised:
2019-09-20
Accepted:
2019-09-24
Published:
2020-04-15
Online:
2020-04-26
Contact:
Liu Wencai,Wu Guohua
Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. J. Mater. Sci. Technol., 2020, 43: 208-219.
Fig. 1. Schematic illustration of one-cycle process of thermal cycling: (a) deep cryogenic-elevated temperature cycling treatment (DCET); (b) deep cryogenic cycling treatment (DCT).
Conditions | 3 cycles of DCET | 5 cycles of DCET | 5 cycles of DCT |
---|---|---|---|
Sand-cast | Cast-DCET-3C | Cast-DCET-5C | Cast-DCT-5C |
T6 | T6-DCET-3C | T6-DCET-5C | T6-DCT-5C |
Table 1 Heat treatment conditions for the tested alloys.
Conditions | 3 cycles of DCET | 5 cycles of DCET | 5 cycles of DCT |
---|---|---|---|
Sand-cast | Cast-DCET-3C | Cast-DCET-5C | Cast-DCT-5C |
T6 | T6-DCET-3C | T6-DCET-5C | T6-DCT-5C |
Fig. 2. Optical and SEM backscattered micrographs of non-thermal cycling treated GW63 alloy in different states: (a) optical micrograph of sand-cast alloy; (b) optical micrograph of T6 state alloy; (c) SEM backscattered micrograph of sand-cast alloy; (d) SEM backscattered micrograph of T6 state alloy.
Fig. 3. X-ray diffraction patterns of GW63 alloys subject to different treatments: (a) sand-cast; (b) Cast-DCT-5C; (c) Cast-DCET-5C; (d) T6; (e) T6-DCT-5C; (f) T6-DCET-3C; (g) T6-DCET-5C.
Mg (at.%) | Gd (at.%) | Y (at.%) | |
---|---|---|---|
Location A | 60.41 | 14.7 | 24.2 |
Location B | 90.5 | 5.75 | 3.74 |
Table 2 EDS results of micro-constitution in Fig. 2(c).
Mg (at.%) | Gd (at.%) | Y (at.%) | |
---|---|---|---|
Location A | 60.41 | 14.7 | 24.2 |
Location B | 90.5 | 5.75 | 3.74 |
Fig. 4. Optical microstructures of tested GW63 alloys after subject to different thermal cycling treatments: (a) Cast-DCET-3C; (b) T6-DCET-3C; (c) Cast-DCET-5C; (d) T6-DCET-5C; (e) Cast-DCT-5C; (f) T6-DCT-5C.
Fig. 5. TEM images and corresponding SAED patterns of GW63 alloys under different conditions: (a) TEM image of T6 state; (b) SAED pattern of T6 state (B=[0001]); (c) TEM image of T6-DCET-3C; (d) SAED pattern of T6-DCET-3C state (B=[0001]); (e) TEM image of T6-DCET-5C; (f) SAED pattern of T6-DCET-5C state (B=[0001]).
Fig. 10. Optical images of longitudinal section in fracture surfaces of GW63 alloys tested under different conditions: (a) sand-cast; (b) T6; (c) Cast-DCET-3C; (d) T6-DCET-3C; (e) Cast-DCET-5C; (f) T6-DCET-5C; (g) Cast-DCT-5C; (h) T6-DCT-5C.
Fig. 11. SEM images of tensile fracture surfaces of sand-cast GW63 alloys subject to different treatments: (a) sand-cast; (b) magnified view of the marked region in (a); (c) Cast-DCET-3C; (d) magnified view of the marked region in (c); (e) Cast-DCET-5C; (f) magnified view of the marked region in (e); (g) Cast-DCT-5C; (h) magnified view of the marked region in (g).
Fig. 12. SEM images of tensile fracture surfaces of T6 treated GW63 alloys under different conditions: (a) T6; (b) magnified view of the marked region in (a); (c) T6-DCET-3C; (d) magnified view of marked region in (c); (e) T6-DCET-5C; (f) magnified view of marked region in (e); (g) T6-DCT-5C; (h) magnified view of marked region in (g).
|
[1] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[2] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[3] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[4] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[5] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[6] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[7] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[8] | Rui Jiang, Shengnan Qian, Chuang Dong, Ying Qin, Yujuan Wu, Jianxin Zou, Xiaoqin Zeng. Composition optimization of high-strength Mg-Gd-Y-Zr alloys based on the structural unit of Mg-Gd solid solution [J]. J. Mater. Sci. Technol., 2021, 72(0): 104-113. |
[9] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[10] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[11] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[12] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[13] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[14] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[15] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||