J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (8): 879-888.DOI: 10.1016/j.jmst.2017.03.016
• Orginal Article • Previous Articles Next Articles
Syam Sundar L.a(), A. Anjum Naserb, Ferro M.C.c, Pereira Eduardab, K. Singh Manoja(
), Sousa A.C.M.a
Received:
2015-09-30
Revised:
2016-11-08
Accepted:
2016-11-18
Online:
2017-08-20
Published:
2017-10-31
Syam Sundar L., A. Anjum Naser, Ferro M.C., Pereira Eduarda, K. Singh Manoj, Sousa A.C.M.. Biocompatibility and biotoxicity of in-situ synthesized carboxylated nanodiamond-cobalt oxide nanocomposite[J]. J. Mater. Sci. Technol., 2017, 33(8): 879-888.
Fig. 3. SEM analysis of cND-Co3O4 nanocomposite (a) general scans (b) all the elements of carbon, cobalt and oxygen present in the composite; individual elements (c) cobalt (d) oxygen (e) carbon; (f) EDX analysis of cND-Co3O4 nanocomposite.
Fig. 7. (a) Average particle size distribution (~16.95 μm) of cND-Co3O4 nanocomposite dispersed in water and the polydisperse Index is 0.451 from DLS analysis, and (b) synthesized cND-Co3O4 nanocomposite showing magnetic behaviour under magnetic field.
Concentrations (μg/mL) | Nanoparticles | Mitotic Index (mean ± SE) | Prophase (%) | Metaphase (%) | Anaphase (%) | Telophase (%) |
---|---|---|---|---|---|---|
Control | - | 71.3 ± 2.2 | 62.3 | 4.03 | 2.4 | 3.7 |
5 | Co3O4 | 58.07 ± 1.7a | 54.2 | 3.5 | 2.0 | 3.1 |
cND | 68.3 ± 2.0b | 59.0 | 3.9 | 2.1 | 3.5 | |
cND-Co3O4 | 67.5 ± 2.0bc | 58.7 | 3.6 | 2.4 | 3.7 | |
10 | Co3O4 | 37.8 ± 1.2a | 43.8 | 3.0 | 1.7 | 2.7 |
cND | 65.7 ± 1.9ab | 55.3 | 3.3 | 2.04 | 2.9 | |
cND-Co3O4 | 63.8 ± 1.9ab | 56.1 | 2.8 | 2.3 | 3.04 | |
20 | Co3O4 | 28.6 ± 0.8a | 32.6 | 1.7 | 1.77 | 2.5 |
cND | 59.0 ± 1.7ab | 51.8 | 2.8 | 2.1 | 2.8 | |
cND-Co3O4 | 51.7 ± 1.5ab | 44.07 | 3.05 | 1.2 | 3.2 |
Table 1 Mitotic index and percent phase indices of prophase, metaphase, anaphase and telophase stages in Allium cepa root meristematic cells exposed to various concentration of cobalt oxide (Co3O4), carboxylated nanodiamond (cND) and cND-Co3O4. 1000 cells were scored per treatment group (n = 3).
Concentrations (μg/mL) | Nanoparticles | Mitotic Index (mean ± SE) | Prophase (%) | Metaphase (%) | Anaphase (%) | Telophase (%) |
---|---|---|---|---|---|---|
Control | - | 71.3 ± 2.2 | 62.3 | 4.03 | 2.4 | 3.7 |
5 | Co3O4 | 58.07 ± 1.7a | 54.2 | 3.5 | 2.0 | 3.1 |
cND | 68.3 ± 2.0b | 59.0 | 3.9 | 2.1 | 3.5 | |
cND-Co3O4 | 67.5 ± 2.0bc | 58.7 | 3.6 | 2.4 | 3.7 | |
10 | Co3O4 | 37.8 ± 1.2a | 43.8 | 3.0 | 1.7 | 2.7 |
cND | 65.7 ± 1.9ab | 55.3 | 3.3 | 2.04 | 2.9 | |
cND-Co3O4 | 63.8 ± 1.9ab | 56.1 | 2.8 | 2.3 | 3.04 | |
20 | Co3O4 | 28.6 ± 0.8a | 32.6 | 1.7 | 1.77 | 2.5 |
cND | 59.0 ± 1.7ab | 51.8 | 2.8 | 2.1 | 2.8 | |
cND-Co3O4 | 51.7 ± 1.5ab | 44.07 | 3.05 | 1.2 | 3.2 |
Concentrations (μg/mL) | Nanoparticles | Chromosomal breaks (%) | Chromosomal Bridge (%) | Sticky chromosomes (%) | Laggard chromosome (%) | Disturbed anaphase/ metaphase (%) |
---|---|---|---|---|---|---|
Control | - | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
5 | Co3O4 | 35.5 ± 2.5 | 41.2 ± 2.8 | 26.7 ± 1.8 | 8.8 ± 0.6 | 7.4 ± 0.5 |
cND | 3.2 ± 0.2a | 4.6 ± 0.3a | 0 ± 0 | 0 ± 0 | 1.3 ± 0.1a | |
cND-Co3O4 | 8.5 ± 0.6abc | 14.3 ± 1.0abc | 4.4 ± 0.3abc | 0 ± 0 | 3.7 ± 0.3abc | |
10 | Co3O4 | 44.7 ± 3.1 | 57.7 ± 4.0 | 33.7 ± 2.3 | 14.5 ± 1.0 | 13.5 ± 0.9 |
cND | 5.5 ± 0.4a | 6.6 ± 0.4a | 1.4 ± 0.1a | 1.3 ± 0.1a | 3.5 ± 0.3a | |
cND-Co3O4 | 17.3 ± 1.2abc | 21.4 ± 1.5abc | 5.7 ± 0.4abc | 3.5 ± 0.2abc | 6.0 ± 0.4abc | |
20 | Co3O4 | 58.8 ± 4.1 | 69.4 ± 4.8 | 47.9 ± 3.3 | 21.4 ± 1.5 | 20.5 ± 1.4 |
cND | 7.1 ± 0.5ab | 8.5 ± 0.6a | 2.6 ± 0.2a | 4.0 ± 0.3a | 5.3 ± 0.4a | |
cND-Co3O4 | 26.4 ± 1.8abc | 27.8 ± 2.0abc | 11.5 ± 0.8abc | 16.6 ± 1.2abc | 9.7 ± 0.7abc |
Table 2 Quantitative estimates of occurrences of different chromosomal aberrations observed in Allium cepa root meristematic cells exposed to various concentration of cobalt oxide (Co3O4), carboxylated nanodiamond (cND) and cND-Co3O4. 1000 cells were scored per treatment group (n? = 3).
Concentrations (μg/mL) | Nanoparticles | Chromosomal breaks (%) | Chromosomal Bridge (%) | Sticky chromosomes (%) | Laggard chromosome (%) | Disturbed anaphase/ metaphase (%) |
---|---|---|---|---|---|---|
Control | - | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
5 | Co3O4 | 35.5 ± 2.5 | 41.2 ± 2.8 | 26.7 ± 1.8 | 8.8 ± 0.6 | 7.4 ± 0.5 |
cND | 3.2 ± 0.2a | 4.6 ± 0.3a | 0 ± 0 | 0 ± 0 | 1.3 ± 0.1a | |
cND-Co3O4 | 8.5 ± 0.6abc | 14.3 ± 1.0abc | 4.4 ± 0.3abc | 0 ± 0 | 3.7 ± 0.3abc | |
10 | Co3O4 | 44.7 ± 3.1 | 57.7 ± 4.0 | 33.7 ± 2.3 | 14.5 ± 1.0 | 13.5 ± 0.9 |
cND | 5.5 ± 0.4a | 6.6 ± 0.4a | 1.4 ± 0.1a | 1.3 ± 0.1a | 3.5 ± 0.3a | |
cND-Co3O4 | 17.3 ± 1.2abc | 21.4 ± 1.5abc | 5.7 ± 0.4abc | 3.5 ± 0.2abc | 6.0 ± 0.4abc | |
20 | Co3O4 | 58.8 ± 4.1 | 69.4 ± 4.8 | 47.9 ± 3.3 | 21.4 ± 1.5 | 20.5 ± 1.4 |
cND | 7.1 ± 0.5ab | 8.5 ± 0.6a | 2.6 ± 0.2a | 4.0 ± 0.3a | 5.3 ± 0.4a | |
cND-Co3O4 | 26.4 ± 1.8abc | 27.8 ± 2.0abc | 11.5 ± 0.8abc | 16.6 ± 1.2abc | 9.7 ± 0.7abc |
Fig. 8. Representative images showing different chromosomal aberrations observed in Allium cepa root meristematic cells under control (A-D) and exposed to various concentrations of cobalt (Co) (D-G) and Co and carboxylated nanodiamond (Co-cND) (H-K). A = Prophase; B = Metaphase; C = Anaphase; D = Telophase; E = Chromosomal break; F = Cytoplasmic bridge; G = Disturbed anaphase; H = Laggard; I = Sticky anaphase; J = Scattered anaphase; K = Prophase nuclei with micronucleus in interphase; L = Binucleate cells.
|
[1] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[2] | Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics [J]. J. Mater. Sci. Technol., 2020, 40(0): 135-145. |
[3] | Aeree Kim, Seonghyeon Kim, Myoung Huh, Hyungmo Kim, Chan Lee. Superior anti-icing strategy by combined sustainable liquid repellence and electro/photo-responsive thermogenesis of oil/MWNT composite [J]. J. Mater. Sci. Technol., 2020, 49(0): 106-116. |
[4] | Emese Lantos, László Mérai, Ágota Deák, Juan Gómez-Pérez, Dániel Sebők, Imre Dékány, Zoltán Kónya, László Janovák. Preparation of sulfur hydrophobized plasmonic photocatalyst towards durable superhydrophobic coating material [J]. J. Mater. Sci. Technol., 2020, 41(0): 159-167. |
[5] | Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties [J]. J. Mater. Sci. Technol., 2020, 38(0): 86-92. |
[6] | Oluwafunmilola Ola, Yu Chen, Qijian Niu, Yongde Xia, Tapas Mallick, Yanqiu Zhu. Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage [J]. J. Mater. Sci. Technol., 2020, 36(0): 70-78. |
[7] | Yaqi Shan, Mingliang Wang, Zengliang Shi, Milan Lei, Xiaoxuan Wang, Fu-Gen Wu, Huan-Huan Ran, Gowri Manohari Arumugam, Qiannan Cui, Chunxiang Xu. SERS-encoded nanocomposites for dual pathogen bioassay [J]. J. Mater. Sci. Technol., 2020, 43(0): 161-167. |
[8] | Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46(0): 21-32. |
[9] | Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds [J]. J. Mater. Sci. Technol., 2020, 46(0): 237-247. |
[10] | Yan Xing, Jing Cheng, Jian Wu, Mengfei Zhang, Xing-ao Li, Wei Pan. Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater [J]. J. Mater. Sci. Technol., 2020, 45(0): 84-91. |
[11] | Xizhou Kai, Shuoming Huang, Lin Wu, Ran Tao, Yanjie Peng, Zemin Mao, Fei Chen, Guirong Li, Gang Chen, Yutao Zhao. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic-chemical in-situ reaction [J]. J. Mater. Sci. Technol., 2019, 35(9): 2107-2114. |
[12] | C.C. Roach, Y.C. Lu. Finite element analysis of the effect of interlayer on interfacial stress transfer in layered graphene nanocomposites [J]. J. Mater. Sci. Technol., 2019, 35(6): 1147-1152. |
[13] | Peisan Wang, Chunxia Qi, Luyuan Hao, Pengchao Wen, Xin Xu. Sepiolite/Cu2O/Cu photocatalyst: Preparation and high performance for degradation of organic dye [J]. J. Mater. Sci. Technol., 2019, 35(3): 285-291. |
[14] | Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35(3): 448-459. |
[15] | Chaoxuan Shen, Han Wang, Tengxin Zhang, You Zeng. Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites [J]. J. Mater. Sci. Technol., 2019, 35(1): 36-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||