Please wait a minute...
J Mater Sci Technol  2009, Vol. 25 Issue (03): 419-422    DOI:
Research Articles Current Issue | Archive | Adv Search |
First-Principle Calculations of Hardness and Melting Point of Mo2C
X.R. Wang, M.F. Yan, H.T. Chen
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Download:  HTML  PDF(497KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper has constructed two kinds of atomic and electronic models for hexagonal β-Mo2C and orthorhombic α-Mo2C. The optimized lattice parameters, elastic constant matrixes and overlap population for Mo2C crystal cells have been obtained to realize the characterization of the hardness and melting point of the two structures by the first-principles plane wave pseudo potential method based on the density functional theory. The results reveal that the calculated lattice parameters of the Mo2C crystal cells agree with the experimental and other calculated data. The calculated melting point/hardness are 2715 K/11.38 GPa for β-Mo2C and 2699 K/10.57~12.67 GPa for α-Mo2C, respectively. The calculated results from the density of states (DOS) demonstrate that the hybridization effect between Mo-3d and C-2p states in α-Mo2C crystal cell is much
stronger than that in β-Mo2C one.

Key words:  First-principle; Mo2C      Hardness      Melting point      Density of states     
Received:  21 April 2008     
Corresponding Authors:  M.F. Yan     E-mail:  yanmufu@hit.edu.cn

Cite this article: 

X.R. Wang,M.F. Yan,H.T. Chen. First-Principle Calculations of Hardness and Melting Point of Mo2C. J Mater Sci Technol, 2009, 25(03): 419-422.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2009/V25/I03/419

[1 ] R. Ayer and P. Machmeier: Metall. Mater. Trans. A, 1998, 29A, 903.
[2 ] R. Ayer and P. Machmeier: Metall. Trans. A., 1993, 24A, 1943.
[3 ] H.R. Yang, B. LeeK and H. Kwon: Mater. Sci. Eng. A, 1999, 265, 179.
[4 ] E.I. Isaev, S.I. Simak and I.A. Abrikosov: J. Appl. Phys, 2007, 101, 123519.
[5 ] K.B. Panda and K.S. Ravi Chandran: Acta Mater., 2006, 54, 1641.
[6 ] V.V. Brazhkin: Philos. Mag. A, 2002, 82, 231.
[7 ] F.M. Gao, J.L. He and E.D. Wu: Phys. Rev. Lett., 2003, 91, 015502.
[8 ] F.M. Gao: Phys. Rev. B, 2006, 73, 132104.
[9 ] M.C. Payne, M.P. Teter and D.C. Allan: Rev. Mod. Phys., 1992, 64, 1045.
[10] P.L.D. Lindan, M.D. Segall, M.J. Probert, et al:: J. Phys. Condens. Matter., 2002, 14, 2717.
[11] M. Marlo and V. Milman: Phys. Rev. B, 2000, 62, 2899.
[12] J.A. White and D.M. Bird: Phys. Rev. B, 1994, 50, 4954.
[13] E. Pathe and V. Sadagopan: Acta Crystallogr., 1963, 16, 202.
[14] P. Liu and A.R. Jose: J. Chem. Phys., 2004, 120(11), 5414.
[15] J. Ren, C.F. Huo, J.G. Wang, Y.W. Li and H.J. Jiao: Surf. Sci., 2005, 596, 212.
[16] X.F. Hao, Y.H. Xu, Z.J. Wu, et al.: Phys. Rev. B, 2006, 74, 224112.
[17] Z.J. Wu, X.F. Hao, X.J. Liu and J. Meng: Phys. Rev. B, 2007, 75, 054115.
[18] M. Alouani and R.C. Albers: Phys. Rev. B, 1991, 43(8), 6500.
[19] M.E. Fine, L.D. Brown and H.L. Marcus: Scripta Metall., 1984, 18, 951.
[20] Q.X. Yu: Mechanical Engineer, 2001, 1, 9. (in Chinese)
[21] M.D. Segall, C.J. Pickard, R. Shah and M.C. Payne: Mol. Phys., 1996, 89, 571.
[22] M.D. Segall, C.J. Pickard, R. Shah and M.C. Payne: Phys. Rev. B, 1996, 54, 16317.
[23] B.F. Levine: J. Chem. Phys., 1973, 59, 1463.
[24] R. Lo, K. Fukui, S. Otani and Y. Iwasawa: Sur. Sci., 1999, 440, L857.

[1] Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys[J]. 材料科学与技术, 2020, 40(0): 47-53.
[2] L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys[J]. 材料科学与技术, 2020, 42(0): 85-96.
[3] Wei Li, Martina Vittorietti, Geurt Jongbloed, Jilt Sietsma. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel[J]. 材料科学与技术, 2020, 45(0): 35-43.
[4] Kai Wang, Lei Chen, Chenguang Xu, Wen Zhang, Zhanguo Liu, Yujin Wang, Jiahu Ouyang, Xinghong Zhang, Yudong Fu, Yu Zhou. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. 材料科学与技术, 2020, 39(0): 99-105.
[5] Rita Maurya, Abdul Rahim Siddiqui, Prvan Kumar Katiyar, Kantesh Balani. Mechanical, tribological and anti-corrosive properties of polyaniline/graphene coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys[J]. 材料科学与技术, 2019, 35(8): 1767-1778.
[6] Shengyu Jiang, Ruihong Wang. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys[J]. 材料科学与技术, 2019, 35(7): 1354-1363.
[7] L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy[J]. 材料科学与技术, 2019, 35(5): 917-925.
[8] Gonçalo L. Sorger, J.P. Oliveira, Patrick L. Inácio, Norbert Enzinger, Pedro Vilaça, R.M. Miranda, Telmo G. Santos. Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials[J]. 材料科学与技术, 2019, 35(3): 360-368.
[9] Richard Jenkins, Shuo Yin, Barry Aldwell, Morten Meyer, Rocco Lupoi. New insights into the in-process densification mechanism of cold spray Al coatings: Low deposition efficiency induced densification[J]. 材料科学与技术, 2019, 35(3): 427-431.
[10] Zhiwu Xu, Zhengwei Li, Shude Ji, Liguo Zhang. Refill friction stir spot welding of 5083-O aluminum alloy[J]. 材料科学与技术, 2018, 34(5): 878-885.
[11] Jie Hu, Xi’An Fan, Chengpeng Jiang, Bo Feng, Qiusheng Xiang, Guangqiang Li, Zhu He, Yawei Li. Introduction of porous structure: A feasible and promising method for improving thermoelectric performance of Bi2Te3 based bulks[J]. 材料科学与技术, 2018, 34(12): 2458-2463.
[12] Xiaojing Sha, Namin Xiao, Yongjun Guan, Xiaosu Yi. A first-principles investigation on mechanical and metallic properties of titanium carbides under pressure[J]. 材料科学与技术, 2018, 34(10): 1953-1958.
[13] F.F. Wang, W.Y. Li, J. Shen, Q. Wen, J.F. dos Santos. Improving weld formability by a novel dual-rotation bobbin tool friction stir welding[J]. 材料科学与技术, 2018, 34(1): 135-139.
[14] Xiaoqing Jiang, Bradley P. Wynne, Jonathan Martin. Variant selection in stationary shoulder friction stir welded Ti-6Al-4V alloy[J]. 材料科学与技术, 2018, 34(1): 198-208.
[15] Wentuo Han, Pingping Liu, Xiaoou Yi, Qian Zhan, Farong Wan, Kiyohiro Yabuuchi, Hisashi Serizawa, Akihiko Kimura. Impact of friction stir welding on recrystallization of oxide dispersion strengthened ferritic steel[J]. 材料科学与技术, 2018, 34(1): 209-213.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.