Please wait a minute...
J Mater Sci Technol  2009, Vol. 25 Issue (03): 356-360    DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of Mg-3Al-1Zn-xRE Alloys
Wei Qiu1,2)†, Enhou Han1) , Lu Liu2)
1) Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2) Shenyang National Laboratory for Material Science, Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(1126KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this work, the influence of element RE on the microstructures and mechanical properties of the hot extuded Mg-3Al-1Zn-xRE alloys (with element RE content of 0.05, 0.1 and 0.2 wt pct) has been investigated and compared. It was found that RE can bring about precipitations phase that is identified as Al11RE3 by X-ray diffraction and transmission electron microscopy (TEM). The grain sizes would not be refined after adding RE element. Al11RE3 phase would increase strength and decrease the ductility. The addition of RE element affects dynamic recrystallized process and even reorientation of recrystallized grains. The results showed that the mechanical properties of AZ31+RE alloy are affected by combination of Al atoms, Mn atoms, Al11RE3 phase and grains orientation. It is important to consider the ratio of RE/Al when designing new Mg-Al-RE alloys.

Key words:  Mg alloy      RE elements      Extrusion      Mechanical properties     
Received:  24 March 2008     
Fund: 

the National Natural Science Fundation of China (NSFC) under grant Nos. 50431020
National Basic Research Program of China (973 Program) project under grant No.2007CB613704.

Cite this article: 

Wei Qiu,Enhou Han,Lu Liu. Microstructure and Mechanical Properties of Mg-3Al-1Zn-xRE Alloys. J Mater Sci Technol, 2009, 25(03): 356-360.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2009/V25/I03/356

[1 ] Y.Z. LÄU, Q.D. Wang, X.Q. Zeng, W.J. Ding, C.Q. Zhai and Y.P. Zhu: Mater. Sci. Eng. A, 2000, 278, 66.
[2 ] Y.W. Kim: J. Mater. Sci. Technol., 2008, 24(1), 89.
[3 ] S.H. Kim, D.H. Kim and N.J. Kim: Mater. Sci. Eng. A, 1997, 226-228, 1030.
[4 ] Q.D. Wang, Y.Z. LÄU, X.Q. Zeng, W.J. Ding and Y.P Zhu: Trans. Nonferrous Met. Soc. China, 2000, 10, 234.
[5 ] Y.S. Wang, Q.D. Wang, C.J. Ma, W.J. Ding and Y.P. Zhu: Mater. Sci. Eng. A, 2003, 342, 178.
[6 ] S. Lee, S.H. Lee and D.H. Kim: Metall. Mater. Trans. A, 1998, 29A, 1221.
[7 ] Z. Yang, J.P. Li, G.H. Li and J.M. Yang: Mater. Sci. Forum, 2005, 488-489, 219.
[8 ] Y. Li and H. Jones: Mater. Sci. Technol., 1996, 12, 651.
[9 ] Y. Li and H. Jones: Mater. Sci. Technol., 1996, 12, 981.
[10] H.T. Zhou, X.Q. Zeng, L.F. Liu, Y. Zhang, Y.P. Zhu and W.J. Ding: J. Mater. Sci., 2004, 39, 7061.
[11] W.G. Yang, C.H. Koo and W.P. Hong: Mater. Sci. Forum, 2003, 419-422, 485.
[12] L.M. Peng, X.Q. Zeng, G.Y. Yuan and W.J. Ding: Mater. Sci. Forum, 2003, 419-422, 153.
[13] S.M. He, L.M. Peng, X.Q. Zeng, G.Y. Yuan and W.J. Ding: Mater. Sci. Forum, 2005, 488-489, 231.
[14] L.Y. Wei and G.L. Dunlop: J. Alloys. Comp, 1996, 232, 264.
[15] L.Y. Wei and G.L. Dunlop and H. Westengen: Mater. Sci. Technol, 1996, 12, 741.
[16] G. Pettersen, H. Westengen, R. H©ier and O. Lohne: Mater. Sci. Eng. A, 1996, 207, 115.
[17] H.H. Zou, X.Q. Zeng, C.Q. Zhai and W.J. Ding: Mater. Sci. Eng. A, 2005, 392, 229.
[18] W.C. Zheng, S.S. Li, T. Bin and D.B. Zeng: The Chinese J. Nonferrous Met., 2006, 16, 197.
[19] E.F. Emley: Principle of Magnesium Technology, Pergamon Press, London, 1966, 503.
[20] Y.C. Lee, A.K. Dahle and D.H. StJohn: Metall. Mater. Trans. A, 2000, 31A, 2895.
[21] P. Cao, D.H. StJohn and M. Qian: Mater. Sci. Forum, 2005, 488-489, 139.
[22] P. Cao, M. Qian and D.H. StJohn: Scripta. Mater, 2006, 54, 1853.
[23] T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi: Scripta Mater., 2001, 45, 89.
[24] S.R. Agnew, J.A. Horton, T.M. Lillo and D.W. Brown: Scripta Mater., 2004, 50, 377.

[1] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[2] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[3] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[4] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
[5] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[6] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. 材料科学与技术, 2020, 46(0): 136-138.
[7] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[8] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[9] Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process[J]. 材料科学与技术, 2020, 42(0): 17-27.
[10] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[11] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[12] Jongbin Go, Jong Un Lee, Hui Yu, Sung Hyuk Park. Influence of Bi addition on dynamic recrystallization and precipitation behaviors during hot extrusion of pure Mg[J]. 材料科学与技术, 2020, 44(0): 62-75.
[13] Sang-Hoon Kim, Sang Won Lee, Byoung Gi Moon, Ha Sik Kim, Sung Hyuk Park. Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature[J]. 材料科学与技术, 2020, 46(0): 225-236.
[14] Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. 材料科学与技术, 2020, 43(0): 168-174.
[15] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.