J. Mater. Sci. Technol. ›› 2020, Vol. 50: 245-256.DOI: 10.1016/j.jmst.2019.12.035
• Research Article • Previous Articles Next Articles
Hanghang Liua,c, Paixian Fua,c,*(), Hongwei Liua,c, Yanfei Caoa,c, Chen Suna,b,c, Ningyu Dua,b,c, Dianzhong Lia,c,*(
)
Received:
2019-10-28
Revised:
2019-12-19
Accepted:
2019-12-22
Published:
2020-08-01
Online:
2020-08-10
Contact:
Paixian Fu,Dianzhong Li
Hanghang Liu, Paixian Fu, Hongwei Liu, Yanfei Cao, Chen Sun, Ningyu Du, Dianzhong Li. Effects of Rare Earth elements on microstructure evolution and mechanical properties of 718H pre-hardened mold steel[J]. J. Mater. Sci. Technol., 2020, 50: 245-256.
Steel | C | Si | Mn | Cr | Ni | Mo | P | S | Al | Ce | La |
---|---|---|---|---|---|---|---|---|---|---|---|
0RE | 0.32 | 0.31 | 1.52 | 1.97 | 0.9 | 0.19 | 0.004 | 0.002 | 0.02 | 0 | 0 |
0.012RE | 0.32 | 0.32 | 1.53 | 1.97 | 0.9 | 0.19 | 0.004 | 0.0008 | 0.02 | 0.0069 | 0.0044 |
0.022RE | 0.32 | 0.33 | 1.52 | 1.97 | 0.9 | 0.19 | 0.004 | 0.0008 | 0.02 | 0.015 | 0.0068 |
0.07RE | 0.32 | 0.32 | 1.51 | 1.97 | 0.9 | 0.19 | 0.004 | 0.0006 | 0.02 | 0.052 | 0.018 |
Table 1 Chemical compositions of test steels (wt%).
Steel | C | Si | Mn | Cr | Ni | Mo | P | S | Al | Ce | La |
---|---|---|---|---|---|---|---|---|---|---|---|
0RE | 0.32 | 0.31 | 1.52 | 1.97 | 0.9 | 0.19 | 0.004 | 0.002 | 0.02 | 0 | 0 |
0.012RE | 0.32 | 0.32 | 1.53 | 1.97 | 0.9 | 0.19 | 0.004 | 0.0008 | 0.02 | 0.0069 | 0.0044 |
0.022RE | 0.32 | 0.33 | 1.52 | 1.97 | 0.9 | 0.19 | 0.004 | 0.0008 | 0.02 | 0.015 | 0.0068 |
0.07RE | 0.32 | 0.32 | 1.51 | 1.97 | 0.9 | 0.19 | 0.004 | 0.0006 | 0.02 | 0.052 | 0.018 |
Fig. 6. SEM morphologies and EDS analysis of inclusions of test steels: (a) RE-O-S-Al inclusion of 0.012RE steel; (b) RE-O + MnS composite inclusion of 0.012RE steel; (c) RE-O + RE-S composite inclusion of 0.022RE steel; (d) RE-O-S inclusion of 0.022RE steel in A area; (e) RE-S inclusion of 0.07 RE steel in B area; (f) RE-O-S inclusions of 0.07RE steel in C and D areas.
Fig. 7. Thermodynamic calculation of equilibrium precipitation of inclusions during solidification by Thermo-Calc software: (a) 0 wt% Ce; (b) 0.012 wt% Ce; (c) 0.022 wt% Ce; (d) 0.07 wt% Ce; (e) mass fraction of constitute phases in test steel without Ce addition.
Sample | SEM results | Factsage results | Actual precipitation |
---|---|---|---|
0RE | MnS, MnS + Al2O3 | MnS, Al2O3 | MnS, MnS + Al2O3 |
0.012RE | RE-O-S-Al, RE-O-MnS | Ce2O2S, Ce2O3, CeAlO3, MnS | RE2O2S, RE2O3, REAlO3, MnS |
0.022RE | RE-S, RE-O, RE-O-S | Ce2O2S, Ce2O3, SCe | RE2O2S, RE2O3, RES |
0.07RE | RE-O-S, RE-S | Ce2O2S, SCe | RE2O2S, RES |
Table 2 Summary of the relationship between amount of RE and type of formed inclusions.
Sample | SEM results | Factsage results | Actual precipitation |
---|---|---|---|
0RE | MnS, MnS + Al2O3 | MnS, Al2O3 | MnS, MnS + Al2O3 |
0.012RE | RE-O-S-Al, RE-O-MnS | Ce2O2S, Ce2O3, CeAlO3, MnS | RE2O2S, RE2O3, REAlO3, MnS |
0.022RE | RE-S, RE-O, RE-O-S | Ce2O2S, Ce2O3, SCe | RE2O2S, RE2O3, RES |
0.07RE | RE-O-S, RE-S | Ce2O2S, SCe | RE2O2S, RES |
Fig. 8. CCT diagrams and SEM microstructures corresponding to different cooling rates of 0RE and 0.07RE steels. 0RE: (a) 10 K/s; (b) 1 K/s; (c) 0.05 K/s; (d) 0.01 K/s. 0.07RE: (e) 10 K/s; (f) 1 K/s; (g) 0.05 K/s; (h) 0.01 K/s (M is martensite, B is bainite and P is pearlite; Ps is the start point of pearlite transformation and Pf is the finish point of pearlite transformation; Bs is the start point of bainite transformation and Bf is the finish point of bainite transformation).
718H steel | c | m |
---|---|---|
0RE | 1.7965 × 10-4 | 3.48682 |
0.012RE | 1.68835 × 10-4 | 2.86087 |
0.022RE | 1.78651 × 10-4 | 2.70431 |
0.07RE | 0.92327 × 10-4 | 3.65317 |
Table 3 Paris law constants with different residual contents of RE.
718H steel | c | m |
---|---|---|
0RE | 1.7965 × 10-4 | 3.48682 |
0.012RE | 1.68835 × 10-4 | 2.86087 |
0.022RE | 1.78651 × 10-4 | 2.70431 |
0.07RE | 0.92327 × 10-4 | 3.65317 |
Fig. 10. Evolution of mechanical properties of test steels in response to different residual contents of RE: (a) yield strength, tensile strength, elongation and section shrinkage; (b) impact properties; (c) isotropic properties.
Fig. 12. Schematic diagrams of crack initiation and propagation of inclusions under in-situ tension (a), crack initiation (b), crack aggregation (c) and inclusion shedding (d).
[1] |
R.M. Wu, J.W. Li, Y. Su, S.M. Liu, Z.S. Yu, Mater. Sci. Eng. A 706 (2017) 15-21.
DOI URL |
[2] |
H.H. Liu, P.X. Fu, H.W. Liu, C. Sun, M.Y. Sun, D.Z. Li, Mater. Sci. Eng. A 737 (2018) 274-285.
DOI URL |
[3] |
R.M. Wu, Y.F. Zheng, X.C. Wu, X.C. Li, Ironmak. Steelmak. 44 2016 17-22.
DOI URL |
[4] |
Y.N. Wang, J. Yang, Y.P. Bao, Metall. Mater. Trans. A 46 (2015) 281-292.
DOI URL |
[5] |
S.M. Moghaddam, F. Sadeghi, K. Paulson, N. Weinzapfel, M. Correns, V. Bakolas, M. Dinkel, Int. J. Fatigue 80 (2015) 203-215.
DOI URL |
[6] |
Y. Yamashita, Y. Murakami, Int. J. Fatigue 93 (2016) 406-414.
DOI URL |
[7] |
W. Li, Z.D. Sun, Z.Y. Zhang, H.L. Deng, T. Sakai, Mater. Des. 64 2014 760-768.
DOI URL |
[8] |
P. Zhao, X.R. Wang, E. Yan, R.D.K. Misra, C.M. Du, F. Du, Mater. Sci. Eng. A 754 (2019) 275-281.
DOI URL |
[9] |
X.G. Liu, C. Wang, J.T. Gui, Q.Q. Xiao, B.F. Guo, Mater. Sci. Eng. A 746 (2019) 239-247.
DOI URL |
[10] |
Z.H. Hu, Y.Z. Zhan, G.H. Zhang, J. She, C.H. Li, Mater. Des. 31 2010 1599-1602.
DOI URL |
[11] |
W.L. Xiao, Y.S. Shen, L.D. Wang, Y.M. Wu, Z.Y. Cao, S.S. Jia, L.M. Wang, Mater. Des. 31 2010 3542-3549.
DOI URL |
[12] |
T.J. Luo, Y.S. Yang, Mater. Des. 32 2011 5043-5048.
DOI URL |
[13] |
Z.K. Qu, L.B. Wu, R.Z. Wu, J.H. Zhang, M.L. Zhang, B. Liu, Mater. Des. 54 2014 792-795.
DOI URL |
[14] |
F.A. Mirza, D.L. Chen, D.J. Li, X.Q. Zeng, Mater. Des. 46 2013 411-418.
DOI URL |
[15] | G. Yarkadas¸, L.C. Kumruoğlu H. Şevik, Mater.Charact. 136 2018 152-156. |
[16] |
M.F. Wang, D.H. Xiao, P.F. Zhou, W.S. Liu, Y.Z. Ma, B.R. Sun, J. Alloys Compd. 742 2018 232-239.
DOI URL |
[17] |
S.F. Zhang, G.Q. Chen, R.S. Pei, Y.P. Wang, D.G. Li, P.P. Wang, G.H. Wu, Mater. Sci. Eng. A 647 (2015) 105-112.
DOI URL |
[18] |
D.Z. Li, X.Q. Chen, P.X. Fu, X.P. Ma, H.W. Liu, Y. Chen, Y.F. Cao, Y.K. Luan, Y.Y. Li, Nat. Commun. 5 2014 5572.
DOI URL PMID |
[19] |
S.T. Kim, S.H. Jeon, I.S. Lee, Y.S. Park, Corros. Sci. 52 2010 1897-1904.
DOI URL |
[20] |
J. Hufenbach, A. Helth, M.H. Lee, H. Wendrock, L. Giebeler, C.Y. Choe, K.H. Kim, U. Kühn, T.S. Kim, J. Eckert, Mater. Sci. Eng. A 674 (2016) 366-374.
DOI URL |
[21] |
Y.C. Cai, R.P. Liu, Y.H. Wei, Z.G. Cheng, Mater. Des. 62 2014 83-90.
DOI URL |
[22] |
J.H. Ahn, H.D. Jung, J.H. Im, K.H. Jung, B.M. Moon, Mater. Sci. Eng. A 658 (2016) 255-262.
DOI URL |
[23] |
H.Y. Ha, C.J. Park, H.S. Kwon, Scr. Mater. 55 2006 991-994.
DOI URL |
[24] |
J.Z. Gao, P.X. Fu, H.W. Liu, D.Z. Li, Metals 5 (2015) 383-394.
DOI URL |
[25] |
M.A. Hamidzadeh, M. Meratian, A. Saatchi, Mater. Sci. Eng. A 571 (2013) 193-198.
DOI URL |
[26] |
H.H. Liu, P.X. Fu, H.W. Liu, S. Chen, J.Z. Gao, D.Z. Li, Metals 7 (2017) 436.
DOI URL |
[27] |
X. Jiang, S.H. Song, Mater. Sci. Eng. A 613 (2014) 171-177.
DOI URL |
[28] |
L. Chen, X.C. Ma, M. Jin, J.F. Wang, H.J. Long, T.Q. Mao, Metall. Mater. Trans. A 47 (2016) 33-38.
DOI URL |
[29] |
Y.W. Xu, S.H. Song, J.W. Wang, Mater. Lett. 161 2015 616-619.
DOI URL |
[30] |
H.L. Liu, C.J. Liu, M.F. Jiang, Mater. Des. 33 2012 306-312.
DOI URL |
[31] |
L. Chen, X.C. Ma, L.M. Wang, X.N. Ye, Mater. Des. 32 2011 2206-2212.
DOI URL |
[32] |
M.J. Wang, S.M. Mu, F.F. Sun, Y. Wang, J. Rare Earth 25 (2007) 490-494.
DOI URL |
[33] |
H.G. Fu, Q. Xiao, J.C. Kuang, Z.Q. Jiang, J.D. Xing, Mater. Sci. Eng. A 466 (2007) 160-165.
DOI URL |
[34] |
Z. Sun, C.S. Zhang, M.F. Yan, Mater. Des. 55 2014 128-136.
DOI URL |
[35] |
D.Z. Li, P. Wang, X.Q. Chen, P.X. Fu, Y.K. Luan, X.Q. Hu, H.W. Liu, M.Y. Sun, Y.F. Cao, L.G. Zheng, J.Z. Gao, Y.T. Zhou, L. Zhang, X.L. Ma, C.L. Dai, C.Y. Yang, Z.H. Jiang, Y. Liu, Y.Y. Li, Nat. Mater. (2019), Submitted for publication.
DOI URL PMID |
[36] |
H.H. Liu, P.X. Fu, H.W. Liu, C. Sun, X.P. Ma, D.Z. Li, Mater. Sci. Eng. A 709 (2018) 181-192.
DOI URL |
[37] |
F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, W.S. Hwang, Materials 9 (2016) 417.
DOI URL |
[38] |
Z. Adabavazeh, W.S. Hwang, Y.H. Su, Sci. Rep. 7 2017 46503.
DOI URL PMID |
[39] |
F. Pan, J. Zhang, H.L. Chen, Y.H. Su, Y.H. Su, W.S. Hwang, Sci. Rep. 6 2016 35843.
DOI URL PMID |
[40] |
H.G. Fu, Q. Xiao, Y.X. Li, Mater. Sci. Eng. A 395 (2005) 281-287.
DOI URL |
[41] |
C. Liu, R.I. Revilla, Z.Y. Liu, D.W. Zhang, X.G. Li, H. Terryn, Corros. Sci. 129 2017 82-90.
DOI URL |
[42] |
H.H. Yan, Y. Hu, D.W. Zhao, Metall. Mater. Trans. A 49 (2018) 5271-5276.
DOI URL |
[43] | H.Y. Wang, X.Y. Gao, H.P. Ren, H.W. Zhang, H.J. Tan, Acta Phys. Sin. 63 2014 148101-148105. |
[44] |
Y.L. Liang, Y.L. Yi, S.L. Long, Q.B. Tan, J. Mater. Eng. Perform. 23 2014 4251-4258.
DOI URL |
[45] |
T.Y. Hsu, ISIJ Int. 38 1998 1153-1164.
DOI URL |
[46] |
W.J. Hui, S.L. Chen, Y.J. Zhang, C.W. Shao, H. Dong, Mater. Des. 66 2015 227-234.
DOI URL |
[47] |
L.H. Lin, Z.Y. Liu, W.J. Liu, Y.R. Zhou, T.T. Huang, J. Mater. Sci. Technol. 34 2018 534-540.
DOI URL |
[48] |
H.H. Liu, P.X. Fu, H.W. Liu, C. Sun, N.Y. Du, D.Z. Li, J. Mater. Sci. Technol. 35 2019 2526-2536.
DOI URL |
[49] |
C.Y. Yang, Y.K. Luan, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 35 2019 1298-1308.
DOI URL |
[1] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[2] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[3] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[4] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[5] | Xiaoxu Liu, Yong Du, Shuhong Liu, Kaiming Cheng, Zhihong Zhang. Phase equilibria and crystal structure of ternary compounds in Al-rich corner of Al-Er-Y system at 673 and 873K [J]. J. Mater. Sci. Technol., 2021, 60(0): 128-138. |
[6] | Min Yang, Jun Zhang, Weimin Gui, Songsong Hu, Zhuoran Li, Min Guo, Haijun Su, Lin Liu. Coupling phase field with creep damage to study γʹ evolution and creep deformation of single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 129-137. |
[7] | Xiangguang Kong, Ying Yang, Shiyu Guo, Ran Li, Bo Feng, Daqiang Jiang, Meng Li, Changfeng Chen, Lishan Cui, Shijie Hao. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning [J]. J. Mater. Sci. Technol., 2021, 71(0): 163-168. |
[8] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
[9] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[10] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[11] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[12] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[13] | Pengyun Xu, Guohui Meng, Larry Pershin, Javad Mostaghimi, Thomas W. Coyle. Control of the hydrophobicity of rare earth oxide coatings deposited by solution precursor plasma spray by hydrocarbon adsorption [J]. J. Mater. Sci. Technol., 2021, 62(0): 107-118. |
[14] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[15] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||