Please wait a minute...
J Mater Sci Technol  2009, Vol. 25 Issue (03): 351-355    DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of Y Addition on Microstructure and Mechanical Properties of Friction Stir Welded ZK60 Alloy
G.M. Xie1,2)†,  Z.Y. Ma2)†, L. Geng1)
1) School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(788KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

6 mm thick ZK60 and ZK60-Y alloy plates were successfully friction stir welded (FSW) at a tool rotation rate of 1200 r/min and a traverse speed of 100 mm/min. FSW resulted in the dissolution of MgZn2 particles in the ZK60 and the breakup and dispersion of W-phase (Mg3Zn3Y2) particles in the ZK60-Y alloy, thereby leading to a decrease in the hardness of the nugget zone (NZ) for the ZK60 alloy and an increase in the hardness of the NZ for the ZK60-Y alloy, respectively. While two FSW joints exhibited similar joint efficiency (87%{89% of ultimate tensile strengths of the parent materials), the yield strength of the FSW ZK60-Y joint was substantially higher than that of the FSW ZK60 joint. The fracture occurred in the NZ and the heat affected zone for the ZK60 and ZK60-Y joints, respectively, which were consistent with the lowest hardness distribution of the welded joints.

Key words:  Friction stir welding      Magnesium      Microstructure      Mechanical properties     
Received:  04 May 2008     
Fund: 

the National Outstanding Young Scientist Foundation under Grant No. 50525103
the Hundred Talents Program of Chinese Academy of Sciences

Cite this article: 

G.M. Xie,Z.Y. Ma,L. Geng. Effect of Y Addition on Microstructure and Mechanical Properties of Friction Stir Welded ZK60 Alloy. J Mater Sci Technol, 2009, 25(03): 351-355.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2009/V25/I03/351

[1 ] M.M. Avedesian and H. Baker (Eds.): Magnesium and Magnesium Alloys, ASM, USA, 1999.
[2 ] I.J. Polmear: Light Alloys, 3rd edn., Arnold, London, 1995.
[3 ] Welding Handbook, China Machine Press, Bejing, 1992, 2, 469.
[4 ] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith and C.J. Dawes: G.B. Patent: No. 9125978, 8, 1991.
[5 ] R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R, 2005, 50, 1.
[6 ] K. Nakata, S. Inoki, Y. Nagano, T. Hashimoto, S. Jo-hgan and M. Ushio: Proceedings of the third Inter-national Symposium on Friction Stir Welding, Kobe, Japan, September 27-28, 2001.
[7 ] W.B. Lee, Y.M. Yeo and S.B. Jung: Mater. Sci. Technol., 2003, 19, 785.
[8 ] W.B. Lee, J.W. Kim, Y.M. Yeon and S.B. Jung: Mater. Trans., 2003, 44, 917.
[9 ] S.H.C. Park, Y.S. Sato and H. Kokawa: Scripta Mater. 2003, 49, 161.
[10] J.A. Esparza, W.C. Davis and L.E. Murr: J. Mater. Sci., 2003, 38, 941.
[11] S.H.C. Park, Y.S. Sato and H. Kokawa: J. Mater. Sci., 2003, 38, 4379.
[12] M.A. Gharacheh, A.H. Kokabi, G.H. Daneshi, B. Shalchi and R. Sarrafi: Int. J. Mach. Tool Manuf., 2006, 46, 1983.
[13] G.M. Xie, Z.Y. Ma, L. Geng and R.S. Chen: Mater. Sci. Eng. A, 2007, 471, 63.
[14] G.M. Xie, Z.Y. Ma and L. Geng: Mater. Sci. Eng. A, 2007, 486, 49.
[15] K. Ishikawa, Y. Kobayashi, T. Kaneko and T. Shibusawa: J. Jpn. Inst. Met., 1997, 61, 1031.

[1] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. 材料科学与技术, 2020, 46(0): 136-138.
[2] Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review[J]. 材料科学与技术, 2020, 44(0): 171-190.
[3] Shi Jin, Dan Zhang, Xiaopeng Lu, Yang Zhang, Lili Tan, Ying Liu, Qiang Wang. Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys[J]. 材料科学与技术, 2020, 47(0): 190-201.
[4] Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. 材料科学与技术, 2020, 43(0): 168-174.
[5] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[6] Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. 材料科学与技术, 2020, 37(0): 143-153.
[7] Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration[J]. 材料科学与技术, 2020, 38(0): 39-46.
[8] Xingrui Chen, Shaochen Ning, Qichi Le, Henan Wang, Qi Zou, Ruizhen Guo, Jian Hou, Yonghui Jia, Andrej Atrens, Fuxiao Yu. Effects of external field treatment on the electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air batteries[J]. 材料科学与技术, 2020, 38(0): 47-55.
[9] Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties[J]. 材料科学与技术, 2020, 38(0): 86-92.
[10] Liu Weifeng, Cao Yanfei, Guo Yifeng, Sun Mingyue, Xu Bin, Li Dianzhong. Solidification microstructure of Cr4Mo4V steel forged in the semi-solid state[J]. 材料科学与技术, 2020, 38(0): 170-182.
[11] Varma S.K., Sanchez Francelia, Moncayo Sabastian, Ramana C.V.. Static and cyclic oxidation of Nb-Cr-V-W-Ta high entropy alloy in air from 600 to 1400 °C[J]. 材料科学与技术, 2020, 38(0): 189-196.
[12] A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity[J]. 材料科学与技术, 2020, 36(0): 1-6.
[13] P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 18-26.
[14] Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading[J]. 材料科学与技术, 2020, 36(0): 45-49.
[15] H.X. Zeng, Z.W. Liu, J.S. Zhang, X.F. Liao, H.Y. Yu. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process[J]. 材料科学与技术, 2020, 36(0): 50-54.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.