Please wait a minute...
J Mater Sci Technol  2009, Vol. 25 Issue (03): 344-346    DOI:
Research Articles Current Issue | Archive | Adv Search |
Si-Al-Ir Oxidation Resistant Coating for Carbon/Carbon Composites by Slurry Dipping
1) C/C Composites Technology Research Center, Northwestern Polytechnical University, Xi'an 710072, China
2) School of Materials Science and Engineering, Xi0an Shiyou University, Xi0an 710065, China
Download:  HTML  PDF(335KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A Si-Al-Ir oxidation resistant coating was prepared for SiC coated carbon/carbon composites by slurry dipping. The phase composition, microstructure and oxidation resistance of the as-prepared Si-Al-Ir coating were studied by XRD (X-ray diffraction), SEM (scanning electron microscopy), and isothermal oxidation test at 1773 K in
air, respectively. The surface of the as-prepared Si-Al-Ir coating was dense and the thickness was approximately 100 μm. Its anti-oxidation property was superior to that of the inner SiC coating. The weight loss of SiC/Si-Al-Ir coated carbon/carbon composites was less than 5 wt. pct after oxidation at 1773 K in air for 79 h. The local oxidation defects in the coating may result in the failure of the SiC/Si-Al-Ir coating.

Key words:  Carbon/carbon composites      Coatings      Oxidation      Si-Al-Ir     
Received:  06 May 2008     
Fund: 

the National "973" Project under grant No. 2006CB600908.

Cite this article: 

Min Huang,Kezhi Li,Hejun Li,Qianggang Fu,Yu Wang. Si-Al-Ir Oxidation Resistant Coating for Carbon/Carbon Composites by Slurry Dipping. J Mater Sci Technol, 2009, 25(03): 344-346.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2009/V25/I03/344

[1 ] G. Savage: Carbon-carbon Composites, Chapman & Hall, London, 1993, 198-209.
[2 ] J.D. Buckley: Am. Ceram. Soc. Bull., 1988, 67(2), 364.
[3 ] J.E. Sheehan, K.W. Buesking and B.J. Sullivan: Rev. Mater. Sci., 1994, 24, 19.
[4 ] H. Hideki, M. Shuichi and H. Shuji: Intermetallics, 2000, 8(9-11), 1081.
[5 ] H.T. Fang, J.H. Jeon, J.C. Zhu and Z.D. Yin: Carbon, 2002, 40(14), 2559.
[6 ] W.L. Worrell and K.N. Lee: United States Patent 6.127.047, 2000.
[7 ] Q.G. Fu, H.J. Li, X.H. Shi, K.Z. Li and G.D. Sun: Scripta Mater., 2005, 52(9), 923.
[8 ] J.F. Huang, X.R. Zeng, H.J. Li, X.B. Xiong and M. Huang: Carbon, 2004, 42(8-9), 1517.
[9 ] D.S. Hou, K.Z. Li, H.J. Li, Q.G. Fu, J. Wei and Y.L. Zhang: J. Mater. Sci. Technol., 2007, 23(4), 559.
[10] A. Joshi and J.S. Lee: Compos. Part A-Appl. S., 1997, 28(2), 181.
[11] Q.G. Fu, H.J. Li, K.Z. Li, X.H. Shi, Z.B. Hu and M. Huang: Carbon, 2006, 44(9), 1866.

[1] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[2] Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation[J]. 材料科学与技术, 2020, 45(0): 49-58.
[3] Fangqiang Ning, Jibo Tan, Xinqiang Wu. Effects of 405 stainless steel on crevice corrosion behavior of Alloy 690 in high-temperature pure water[J]. 材料科学与技术, 2020, 47(0): 76-87.
[4] Changjin Xu, Yutong Wu, Song Li, Jun Zhou, Jing Chen, Min Jiang, Hongda Zhao, Gaowu Qin. Engineering the epitaxial interface of Pt-CeO2 by surface redox reaction guided nucleation for low temperature CO oxidation[J]. 材料科学与技术, 2020, 40(0): 39-46.
[5] Paul C. Uzoma, Fuchun Liu, En-Hou Han. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane[J]. 材料科学与技术, 2020, 45(0): 70-83.
[6] Xiaohua Sha, Wen Yue, Haichao Zhang, Wenbo Qin, Dingshun She, Chengbiao Wang. Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders[J]. 材料科学与技术, 2020, 43(0): 64-73.
[7] Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering[J]. 材料科学与技术, 2020, 37(0): 46-54.
[8] C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, F. Martin-Pedrosa. A new strategy for corrosion protection of porous stainless steel using polypyrrole films[J]. 材料科学与技术, 2020, 37(0): 85-95.
[9] Varma S.K., Sanchez Francelia, Moncayo Sabastian, Ramana C.V.. Static and cyclic oxidation of Nb-Cr-V-W-Ta high entropy alloy in air from 600 to 1400 °C[J]. 材料科学与技术, 2020, 38(0): 189-196.
[10] Yuecun Wang, Meng Li, Yueqing Yang, Xin’ai Zhao, Evan Ma, Zhiwei Shan. In-situ surface transformation of magnesium to protect against oxidation at elevated temperatures[J]. 材料科学与技术, 2020, 44(0): 48-53.
[11] H. Chen, A. Rushworth. Effects of oxide stringers on the β-phase depletion behaviour in thermally sprayed CoNiCrAlY coatings during isothermal oxidation[J]. 材料科学与技术, 2020, 45(0): 108-116.
[12] Yifei Xu, Lars P.H. Jeurgens, Peter Schützendübe, Shengli Zhu, Yuan Huang, Yongchang Liu, Zumin Wang. Effect of atomic structure on preferential oxidation of alloys: amorphous versus crystalline Cu-Zr[J]. 材料科学与技术, 2020, 40(0): 128-134.
[13] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[14] Jing Jing, Jian He, Hongbo Guo. Impact of Si addition on high-temperature oxidation behavior of NiAlHf alloys[J]. 材料科学与技术, 2019, 35(9): 2038-2047.
[15] Xingzhou Li, Jili Wu, Ye Pan. Preparation of nanostructured Cu/Zr metal mixed oxides via self-sustained oxidation of a CuZr binary amorphous alloy[J]. 材料科学与技术, 2019, 35(8): 1601-1606.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.