Please wait a minute...
J Mater Sci Technol  2008, Vol. 24 Issue (02): 192-196    DOI:
Research Articles Current Issue | Archive | Adv Search |
Antibacterial Characterization of Silver Nanoparticles against E. Coli ATCC-15224
M.Raffi, F.Hussain, T.M.Bhatti, J.I.Akhter, A.Hameed, M.M.Hasan
Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad-45650, Pakistan
Download:  HTML  PDF(533KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Silver nanoparticles of mean size 16 nm were synthesized by inert gas condensation (IGC) method. Crystalline structure, morphology and nanoparticles size estimation were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Antibacterial activity of these silver nanoparticles as a function of particles concentration against gram-negative bacterium Escherichia coli (E.coli) was carried out in liquid as well as solid growth media. Scanning electron microscopy (SEM) and TEM studies showed that silver nanoparticles after interaction with E.coli have adhered to and penetrated into the bacterial cells. Antibacterial properties of silver nanoparticles are attributed to their total surface area, as a larger surface to volume ratio of nanoparticles provides more efficient means for enhanced antibacterial activity.
Key words:  Silver      Nanoparticles      Antibacterial      Electron microscopy      
Received:  16 May 2007     
Corresponding Authors:  M. Raffi     E-mail:  Muhammad_raffi@hotmail.com

Cite this article: 

M.Raffi, F.Hussain, T.M.Bhatti, J.I.Akhter, A.Hameed, M.M.Hasan. Antibacterial Characterization of Silver Nanoparticles against E. Coli ATCC-15224. J Mater Sci Technol, 2008, 24(02): 192-196.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2008/V24/I02/192

[1]R.W.Sigel:Mater.Sci.Eng.B,1993,19,37.
[2]C.Suryanarayana:Int.Mater.Rev.,1995,40(2),41.
[3]H.Gleiter:Acta Mater.,2000,48(1),1.
[4]H.J.Lee,S.Y.Yeo and S.H.Jeong:J.Mater.Sci.,2003, 38(10),2199.
[5]I.Sondi and B.Salopek-Sondi:J.Colloid Iuterf.Sci., 2004,275(1),177.
[6]J.R.Morones,J.L.Elechiguerra,A.Camacho,K.Holt, J.B.Kouri,J.T.Ramirez and M.J.Yacaman:Nanotech- nology,2005,16(10),2346.
[7]P.K.Stoimenov,R.L.Klinger,G.L.Marchin and K.J.Klabunde:Langmuir,2002,18,6679.
[8]S.H.Jeong,S.Y.Yeo and S.C.Yi:Mater.Sci.,2005,40, 5407.
[9]S.L.Percivala,P.G.Bowler and D.Russell:J.Hosp.In- fect.,2005,60(1),1.
[10]P.L.Taylor,A.L.Ussher and R.E.Burrelh Biomateri- als,2005,26(35),7221.
[11]A.Panacek,L.Kvitek,R.Prucek,M.Kolar,R.Vecerova, N.Pizurova,V.K.Sharma,T.Nevecna and R.Zborih J. Phys.Chem.B,2006,110(33),16248.
[12]V.Alt,T.Bechert,P.Steinrucke,M.Wagener,P.Seidel, E.Dingeldein,E.Domann and R.Schnettler:Biomate- rials,2{)04,25(18),4383.
[13]J.R.Morones,J.L.Elechiguerra,A.Camacho,K.Holt, J.B.Kouri,.I.T.Ramirez and M.J.Yacaman:Nanotech- nology,2005,16(10),2346.
[14]C.N.Lok,C.M.Ho,R.Chen,Q.Y.He,W.Y.Yu, H.Z.Sun,P.K.H.Tam,J.F.Chiu and C.M.Che:J.Pro- teome Res.,2006,5,916.
[15]A.Oloffs,C.Grossesiestrup,S.Bisson,M.Rinck, R.Rudolph and U.Gross:Biomaterials,1994,15(10), 753.
[16]P.Li,J.Li,C.Z.Wu,Q.S.Wu and J.Li:Nanotechnology, 2005,16(9),1912.
[17]S.T.Zhang,R.W.Fu,D.C.Wu,W.Xu,Q.W.Ye and Z.L.Chen:Carbon,2004,42(15),3209.
[18]C.Baker,A.Pradhan,L.Pakstis,D.J.Pochan and S.I.Shah:J.Nanosci.Nanotechnol,2005,5(2),244.
[19]B.D.Cullity:Elements of X-ray Diffraction,2nd edn, Edison-Wesley Publishing Company Inc,USA,1978.
[20]R.Birringer:Mater.Sci.Eng.A,1989,117,33.
[21]C.G.Granqvisit and R.A.Buharman:J.Appl.Phys., 1976,47(5),2200.
[22]F.E.Kruis,H.Fissan and A.Peled:J Aerosol Sci., 1998,29(5-6),511.
[23]L.B.Kiss,J.Soderlund,G.A.Niklasson and C.G.Granqvist:Nanostruct.Mater.,1999,12(1-4), 327.
[24]M.Raffi,J.I.Akhter and M.M.Hasan:Mater.Chem. Phys.,2006,99(2-3),405.
[25]M.Kokkoris,C.C.Trapalis,S.Kossionides,R.Vlastou, B.Nsouli,R.Grotzschel,S.Spartalis,G.Kordas and T.Paradellis:Nucl.Instrum.Meth.B,2002,188, 67.
[26]K.B.Holt and A.J.Bard:Biochemistry,2005,44(39), 13214.
[27]N.A.Amro,L.P.Kotra,K.Wadu-Mesthrige, A.Bulychev,S.Mobashery and G.Y.Liu:Langmuir, 2000,16,2789.
[28]J.A.Spadaro,T.J.Berger,S.D.Barranco,S.E.Chapin and R.O.Becker:Antimicrob.Agents Chemoth.,1974, 6(5),637.
[1] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[2] Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection[J]. 材料科学与技术, 2020, 37(0): 55-63.
[3] Jinkui Fan, Qiang Zheng, Rui Bao, Jianhong Yi, Juan Du. High performance Sm-Co powders obtained by crystallization from ball milled amorphous state[J]. 材料科学与技术, 2020, 37(0): 181-184.
[4] Periša Jovana, Antić Željka, Ma Chong-Geng, Papan Jelena, Jovanović Dragana, D.Dramićanin Miroslav. Pesticide-induced photoluminescence quenching of ultra-small Eu3+-activated phosphate and vanadate nanoparticles[J]. 材料科学与技术, 2020, 38(0): 197-204.
[5] Huabo Li, Yuanyuan Cui, Yixin Liu, Lu Zhang, Quan Zhang, Juhua Zhang, Wei-Lin Dai. Highly efficient Ag-modified copper phyllosilicate nanotube: Preparation by co-ammonia evaporation hydrothermal method and application in the selective hydrogenation of carbonate[J]. 材料科学与技术, 2020, 47(0): 29-37.
[6] Yongyong Xue, Na Wang, Zhi Zeng, Jinpeng Huang, Zhiming Xiang, Yan-Qing Guan. Neuroprotective effect of chitosan nanoparticle gene delivery system grafted with acteoside (ACT) in Parkinson’s disease models[J]. 材料科学与技术, 2020, 43(0): 197-207.
[7] Vellaichamy Balakumar, Hyungjoo Kim, Ji Won Ryu, Ramalingam Manivannan, Young-A Son. Uniform assembly of gold nanoparticles on S-doped g-C3N4 nanocomposite for effective conversion of 4-nitrophenol by catalytic reduction[J]. 材料科学与技术, 2020, 40(0): 176-184.
[8] Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application[J]. 材料科学与技术, 2020, 40(0): 196-203.
[9] Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing[J]. 材料科学与技术, 2020, 41(0): 1-11.
[10] Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys[J]. 材料科学与技术, 2020, 41(0): 127-138.
[11] Madhusudhan Alle, Seung-Hwan Lee, Jin-Chul Kim. Ultrafast synthesis of gold nanoparticles on cellulose nanocrystals via microwave irradiation and their dyes-degradation catalytic activity[J]. 材料科学与技术, 2020, 41(0): 168-177.
[12] Noh Young Wook, Jin In Su, Park Sang Hyun, Jung Jae Woong. Room-temperature synthesis of ZrSnO4 nanoparticles for electron transport layer in efficient planar hetrojunction perovskite solar cells[J]. 材料科学与技术, 2020, 42(0): 38-45.
[13] Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds[J]. 材料科学与技术, 2020, 46(0): 237-247.
[14] Tao Chen, Heping Li, Jing Li, Sanyuan Hu, Pin Ye, Youwei Yan. Direct writing of silver microfiber with precise control on patterning for robust and flexible ultrahigh-performance transparent conductor[J]. 材料科学与技术, 2020, 47(0): 103-112.
[15] Rongjian Shi, Zidong Wang, Lijie Qiao, Xiaolu Pang. Microstructure evolution of in-situ nanoparticles and its comprehensive effect on high strength steel[J]. 材料科学与技术, 2019, 35(9): 1940-1950.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.