J. Mater. Sci. Technol. ›› 2022, Vol. 129: 27-39.DOI: 10.1016/j.jmst.2022.05.003
• Research Article • Previous Articles Next Articles
Yong Luoa, Yuhui Xiea, Wei Genga, Junhan Chua, Hua Wua,c, Delong Xiea,*(), Xinxin Shengb,*(
), Yi Meia
Received:
2022-04-16
Revised:
2022-05-03
Accepted:
2022-05-05
Published:
2022-05-23
Online:
2022-05-23
Contact:
Delong Xie,Xinxin Sheng
About author:
xinxin.sheng@gdut.edu.cn, cexxsheng@gmail.com (X. Sheng).Yong Luo, Yuhui Xie, Wei Geng, Junhan Chu, Hua Wu, Delong Xie, Xinxin Sheng, Yi Mei. Boosting fire safety and mechanical performance of thermoplastic polyurethane by the face-to-face two-dimensional phosphorene/MXene architecture[J]. J. Mater. Sci. Technol., 2022, 129: 27-39.
Fig. 1. SEM images of (a) MAX and (b) MXene after etching; (c) XRD patterns of MAX powders and MXene nanosheets; (d) TEM and (e) AFM micrographs of MXene, (f) corresponding height curves of MXene; (g) TEM and (h) AFM micrographs of BP nanosheets, (i) corresponding height curves of BP nanosheets.
Fig. 2. (a) XRD patterns, (b) Raman spectra, (c) FTIR spectra of MXene, BP, and BP1-MXene2@PDA; (d) XPS survey spectra of BP1-MXene2@PDA; the high-resolution (e) N 1s, (f) O 1s, (g) P 2p, and (h) Ti 2p XPS spectra of the BP1-MXene2@PDA; (i) TGA curves of MXene, BP, and all BP-MXene@PDA nanohybrids.
Fig. 3. SEM images of (a) BP nanosheets and (b) MXene nanosheets, (c) low- and (d) high-magnification SEM images of BP1-MXene2@PDA nanohybrids, and (e) corresponding elemental mapping images of C, N, P, O, Ti, and BP1-MXene2@PDA, respectively.
Fig. 12. (a) XPS survey spectra for the residues; (b) the high-resolution O 1s XPS spectrum of TBM-1; the high-resolution P 2p XPS spectra of (c) TB and (d) TBM-1; the high-resolution Ti 2p XPS spectra of (e) TM and (f) TBM-1.
[1] |
H. M.C.C. Somarathna, S.N. Raman, D. Mohotti, A. A. Mutalib, K.H. Badri, Constr. Build. Mater. 190 (2018) 995-1014.
DOI URL |
[2] | J. Datta, P. Kasprzyk, Polym. Eng. Sci. 58 (2018) E14-E35. |
[3] |
L. Wan, C. Deng, H. Chen, Z.Y. Zhao, S.C. Huang, W.C. Wei, A.H. Yang, H.B. Zhao, Y.Z. Wang, Chem. Eng. J. 417 (2021) 129314.
DOI URL |
[4] |
U. Almeida Pinto, L.L.Y. Visconte, J. Gallo, R.C.R. Nunes, Polym. Degrad. Stab. 69 (20 0 0) 257-260.
DOI URL |
[5] |
L.A. Savas, T.K. Deniz, U. Tayfun, M. Dogan, Polym. Degrad. Stab. 135 (2017) 121-129.
DOI URL |
[6] |
L. Liu, Y. Xu, Y. He, M. Xu, Z. Shi, H. Hu, Z. Yang, B. Li, Polym. Degrad. Stab. 167 (2019) 146-156.
DOI URL |
[7] |
S.C. Huang, C. Deng, Z.Y. Zhao, H. Chen, Y.Y. Gao, Y.Z. Wang, Polym. Degrad. Stab. 178 (2020) 109179.
DOI URL |
[8] |
G. Huang, W. Chen, T. Wu, H. Guo, C. Fu, Y. Xue, K. Wang, P. Song, Chem. Eng. J. 410 (2021) 127590.
DOI URL |
[9] |
Y. Luo, D. Xie, Y. Chen, T. Han, R. Chen, X. Sheng, Y. Mei, Polym. Degrad. Stab. 170 (2019) 109019.
DOI URL |
[10] | S. Zhao, J. Yin, K. Zhou, Y. Cheng, B. Yu, Compos. Part A 122 (2019) 77-84. |
[11] |
X.L. Ren, Y. Mei, P.C. Lian, D.L. Xie, Y.Y. Yang, Y.Z. Wang, Z.R. Wang, Polymers 10 (2018) 227.
DOI URL |
[12] |
X.L. Ren, Y. Mei, P.C. Lian, D.L. Xie, W.B. Deng, Y.L. Wen, Y. Luo, Polymers 11 (2019) 193.
DOI URL |
[13] |
W. Cai, Y. Hu, Y. Pan, X. Zhou, F. Chu, L. Han, X. Mu, Z. Zhuang, X. Wang, W. Xing, J. Colloid Interface Sci. 561 (2020) 32-45.
DOI URL |
[14] | L. He, X. Zhou, W. Cai, Y. Xiao, F. Chu, X. Mu, X. Fu, Y. Hu, L. Song, Compos. Part B 202 (2020) 108446. |
[15] |
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao, J. Gu, Compos. Commun. 24 (2021) 100653.
DOI URL |
[16] | B.B. Shao, Z.F. Liu, G.M. Zeng, H. Wang, Q.H. Liang, Q.Y. He, M. Cheng, C.Y. Zhou, L. B. Jiang, B. Song, J. Mater. Chem. A 8 (2020) 7508-7535. |
[17] |
Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan, J. Gu, J. Mater. Sci. Technol. 103 (2022) 42-49.
DOI |
[18] |
X. Sheng, Y. Zhao, L. Zhang, X. Lu, Compos. Sci. Technol. 181 (2019) 107710.
DOI URL |
[19] |
X. He, S. Li, R. Shen, Y. Ma, L. Zhang, X. Sheng, Y. Chen, D. Xie, J. Huang, Adv. Compos. Hybrid Mater. (2022), doi: 10.1007/s42114-021-00392-0.
DOI |
[20] |
L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan, J. Gu, Carbon Energy 4 (2022) 200-210.
DOI URL |
[21] |
Y. Luo, Y. Xie, H. Jiang, Y. Chen, L. Zhang, X. Sheng, D. Xie, H. Wu, Y. Mei, Chem. Eng. J. 420 (2021) 130466.
DOI URL |
[22] |
S. Huang, L. Wang, Y. Li, C. Liang, J. Zhang, J. Appl. Polym. Sci. 138 (2021) 50649.
DOI URL |
[23] | S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu, X. Lu, J. Qu, Adv. Funct. Mater. (2022) 2200570. |
[24] |
Y. Pan, L. Fu, Q. Zhou, Z. Wen, C.T. Lin, J. Yu, W. Wang, H. Zhao, Polym. Compos. 41 (2020) 210-218.
DOI URL |
[25] |
Y. Xue, J. Feng, S. Huo, P. Song, B. Yu, L. Liu, H. Wang, Chem. Eng. J. 397 (2020) 125336.
DOI URL |
[26] | B. Shao, J. Wang, Z. Liu, G. Zeng, L. Tang, Q. Liang, Q. He, T. Wu, Y. Liu, X. Yuan, J. Mater. Chem. A 8 (2020) 5171-5185. |
[27] |
J.H. Ryu, P.B. Messersmith, H. Lee, ACS Appl. Mater. Interfaces 10 (2018) 7523-7540.
DOI URL |
[28] |
X. Sheng, R. Mo, Y. Ma, X. Zhang, L. Zhang, H. Wu, Ind. Eng. Chem. Res. 58 (2019) 16571-16580.
DOI URL |
[29] |
S.L. Qiu, Y.F. Zhou, X.Y. Ren, B. Zou, W.W. Guo, L. Song, Y. Hu, Chem. Eng. J. 402 (2020) 126212.
DOI URL |
[30] |
X. Zhao, X.J. Zha, L.S. Tang, J.H. Pu, K. Ke, R.Y. Bao, Z.Y. Liu, M.B. Yang, W. Yang, Nano Res. 13 (2020) 255-264.
DOI URL |
[31] |
W. Cai, W.W. Guo, Y. Pan, J.L. Wang, X.W. Mu, X.M. Feng, B.H. Yuan, B.B. Wang, Y. Hu, Compos. Part A Appl. Sci. 111 (2018) 94-105.
DOI URL |
[32] |
T.B. Ma, H. Ma, K.P. Ruan, X.T. Shi, H. Qiu, S.Y. Gao, J.W. Gu, Chin. J. Polym. Sci. 40 (2022) 248-255.
DOI URL |
[33] |
Y. Zhang, Z. Ma, K. Ruan, J. Gu, Nano Res. 15 (2022) 5601-5609.
DOI URL |
[34] |
S. Zhang, X.Y. Li, W. Yang, H. Tian, Z. Han, H. Ying, G. Wang, W.Q. Han, ACS Appl. Mater. Interfaces 11 (2019) 42086-42093.
DOI URL |
[35] |
Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. F. Yu, P.K. Chu, Adv. Funct. Mater. 25 (2015) 6996-7002.
DOI URL |
[36] |
R. Zhao, Z. Qian, Z. Liu, D. Zhao, X. Hui, G. Jiang, C. Wang, L. Yin, Nano Energy 65 (2019) 104037.
DOI URL |
[37] | F. Li, Y. Jiang, M. Xia, M. Sun, B. Xue, D. Liu, X. Zhang, J. Phys. Chem. C 113 (2009) 18134-18141. |
[38] |
S. Oktay, Z. Kahraman, M. Urgen, K. Kazmanli, Appl. Surf. Sci. 328 (2015) 255-261.
DOI URL |
[39] |
Z. Liu, X. Fan, M. Han, J. Zhang, L. Chen, Y. Tang, J. Kong, J. Gu, Compos. Sci. Technol. 223 (2022) 109426.
DOI URL |
[40] |
X. Huang, P. Wu, Adv. Funct. Mater. 30 (2020) 1910048.
DOI URL |
[41] |
W. Cai, N. Hong, X. Feng, W. Zeng, Y. Shi, Y. Zhang, B. Wang, Y. Hu, Chem. Eng. J. 330 (2017) 309-321.
DOI URL |
[42] |
Y. Zhang, K. Ruan, J. Gu, Small 17 (2021) 2101951.
DOI URL |
[43] |
W. Xing, W. Yang, W. Yang, Q. Hu, J. Si, H. Lu, B. Yang, L. Song, Y. Hu, R.K.K. Yuen, ACS Appl. Mater. Interfaces 8 (2016) 26266-26274.
DOI URL |
[44] | Y. Luo, Y. Xie, W. Geng, G. Dai, X. Sheng, D. Xie, H. Wu, Y. Mei, J. Colloid Inter- faces Sci. 606 (2022) 223-235. |
[45] |
B. Schartel, T.R. Hull, Fire Mater. 31 (2007) 327-354.
DOI URL |
[46] |
Z. Xiong, Y. Zhang, X. Du, P. Song, Z. Fang, ACS Sustain. Chem. Eng. 7 (2019) 8954-8963.
DOI URL |
[47] |
B. Zou, S. Qiu, X. Ren, Y. Zhou, F. Zhou, Z. Xu, Z. Zhao, L. Song, Y. Hu, X. Gong, J. Hazard. Mater. 383 (2020) 121069.
DOI URL |
[48] | X. Zhong, X. Yang, K. Ruan, J. Zhang, H. Zhang, J. Gu, Macromol. Rapid Com- mun. 43 (2022) 2100580. |
[49] |
W. Yang, W.J. Yang, B. Tawiah, Y. Zhang, L.L. Wang, S.E. Zhu, T.B.Y. Chen, A. C.Y. Yuen, B. Yu, Y.F. Liu, J.Y. Si, E.Z. Hu, H.D. Lu, K.H. Hu, Q.N. Chan, G.H. Yeoh, Compos. Sci. Technol. 164 (2018) 44-50.
DOI URL |
[50] |
Y. Luo, Y. Xie, R. Chen, R. Zheng, H. Wu, X. Sheng, D. Xie, Y. Mei, Front. Chem. Sci. Eng. 15 (2021) 1332-1345.
DOI URL |
[51] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[52] |
S. Qiu, Y. Zhou, X. Zhou, T. Zhang, C. Wang, R.K.K. Yuen, W. Hu, Y. Hu, Small 15 (2019) 1805175.
DOI URL |
[53] |
H. Huang, D. Dong, W. Li, X. Zhang, L. Zhang, Y. Chen, X. Sheng, X. Lu, Chin. J. Chem. Eng. 28 (2020) 1981-1993.
DOI URL |
[54] |
R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng, L. Zheng, L. Zheng, Z. Chen, G. Liu, B. Chen, Y. Mi, J. Yang, Adv. Energy Mater. 8 (2018) 1801514.
DOI URL |
[55] |
Z. Qu, K. Wu, E. Jiao, W. Chen, Z. Hu, C. Xu, J. Shi, S. Wang, Z. Tan, Chem. Eng. J. 382 (2020) 122991.
DOI URL |
[56] |
M. Lewin, Fire Mater. 27 (2003) 1-7.
DOI URL |
[57] |
M. Lewin, E.M. Pearce, K. Levon, A. Mey-Marom, M. Zammarano, C.A. Wilkie, B.N. Jang, Polym. Adv. Technol. 17 (2006) 226-234.
DOI URL |
[58] |
L. Liu, Y. Xu, Y. Pan, M. Xu, Y. Di, B. Li, Chem. Eng. J. 421 (2021) 127761.
DOI URL |
[59] |
M.M. Velencoso, A. Battig, J.C. Markwart, B. Schartel, F.R. Wurm, Angew. Chem. Int. Ed. 57 (2018) 10450-10467.
DOI PMID |
[1] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[2] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[3] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[4] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[5] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[6] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[7] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
[8] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[9] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
[10] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[11] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[12] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[13] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
[14] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[15] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||