J. Mater. Sci. Technol. ›› 2022, Vol. 117: 196-206.DOI: 10.1016/j.jmst.2021.12.014
• Research Article • Previous Articles Next Articles
Tao Xianga, Peng Dua, Zeyun Caia, Kun Lia, Weizong Baoa, Xinxin Yanga, Guoqiang Xiea,b,*()
Received:
2021-09-12
Revised:
2021-11-13
Accepted:
2021-12-03
Published:
2022-02-18
Online:
2022-08-01
Contact:
Guoqiang Xie
About author:
∗School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. E-mail address: xieguoqiang@hit.edu.cn (G. Xie).Tao Xiang, Peng Du, Zeyun Cai, Kun Li, Weizong Bao, Xinxin Yang, Guoqiang Xie. Phase-tunable equiatomic and non-equiatomic Ti-Zr-Nb-Ta high-entropy alloys with ultrahigh strength for metallic biomaterials[J]. J. Mater. Sci. Technol., 2022, 117: 196-206.
Fig. 1. XRD patterns of the equiatomic and non-equiatomic Ti-Zr-Nb-Ta HEAs: (a) after 40 h ball milling process with the enlarged patterns (b), (c) after SPS process with the enlarged patterns (d).
Fig. 2. SEM-BSE images of the equiatomic and non-equiatomic Ti-Zr-Nb-Ta HEAs: (a) Ti35Zr35Nb15Ta15, (b) Ti30Zr30Nb20Ta20, (c) Ti25Zr25Nb25Ta25, (d) Ti20Zr20Nb30Ta30; (e) Electron back-scattering diffraction (EBSD) image and (f) grain size distribution of the Ti25Zr25Nb25Ta25 HEAs, respectively.
Fig. 3. TEM bright-filed image (a) with the enlarged images (b) of the Ti25Zr25Nb25Ta25 HEAs, (c) SAED pattern from both BCC1 and BCC2 phases of the Ti25Zr25Nb25Ta25 HEAs taken along the [011] zone axes. (d) TEM image and corresponding FFT images of the dual phases structure. (e) TEM image and corresponding elemental mapping results of the Ti25Zr25Nb25Ta25 HEAs: (f) Nb, (g) Ta, (h) Ti and (i) Zr, respectively.
Fig. 4. Vickers micro-hardness (a), compressive stress-strain curves (b) of the equiatomic and non-equiatomic Ti-Zr-Nb-Ta HEAs. (c) Yield strength and strain of this work compared with previous reports Refs [[40], [41], [42], [43], [44]].
Alloys | σy (MPa) | σmax (MPa) | ε (%) | ρ (g/cm3) |
---|---|---|---|---|
Ti35Zr35Nb15Ta15 | - | 1380 ± 27 | - | 7.42 |
Ti30Zr30Nb20Ta20 | 2261 ± 27 | 2394 ± 22 | 3.4 ± 0.4 | 8.16 |
Ti25Zr25Nb25Ta25 | 2212 ± 38 | 2292 ± 31 | 8.7 ± 0.2 | 8.88 |
Ti20Zr20Nb30Ta30 | 1729 ± 134 | 1848 ± 107 | 4.9 ± 1.3 | 9.61 |
Table 1. Several fundamental mechanical properties of the equiatomic and non-equiatomic Ti-Zr-Nb-Ta HEAs, respectively.
Alloys | σy (MPa) | σmax (MPa) | ε (%) | ρ (g/cm3) |
---|---|---|---|---|
Ti35Zr35Nb15Ta15 | - | 1380 ± 27 | - | 7.42 |
Ti30Zr30Nb20Ta20 | 2261 ± 27 | 2394 ± 22 | 3.4 ± 0.4 | 8.16 |
Ti25Zr25Nb25Ta25 | 2212 ± 38 | 2292 ± 31 | 8.7 ± 0.2 | 8.88 |
Ti20Zr20Nb30Ta30 | 1729 ± 134 | 1848 ± 107 | 4.9 ± 1.3 | 9.61 |
Fig. 5. Fluorescence staining of MC3T3-E1 cells on CP-Ti surfaces (a-c) and Ti25Zr25Nb25Ta25 bio-HEA surfaces (d-f) for 1 d, 3 d and 7 d, respectively. Cell proliferation (g) and viability (h) of MC3T3-E1 cells cultured on CP-Ti and Ti25Zr25Nb25Ta25 bio-HEA surface for 1 d, 3 d and 7 d, respectively.
[1] |
T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama, T. Nakano, Mater. Sci. Eng. C 107 (2020) 110322.
DOI URL |
[2] |
C.H. Chen, Y.J. Chen, J.J. Shen, Met. Mater. Int. 26 (2019) 617-629.
DOI URL |
[3] |
Y.X. Ye, B. Ouyang, C.Z. Liu, G.J. Duscher, T.G. Nieh, Acta Mater. 199 (2020) 413-424.
DOI URL |
[4] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kon-tis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Nature 563 (2018) 546-550.
DOI URL |
[5] |
S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109 (2011) 103505.
DOI URL |
[6] |
H. Guan, L. Chai, Y. Wang, K. Xiang, L. Wu, H. Pan, M. Yang, C. Teng, W. Zhang, Appl. Surf. Sci. 549 (2021) 149338.
DOI URL |
[7] |
M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano, Scr. Mater. 129 (2017) 65-68.
DOI URL |
[8] |
S.P. Wang, J. Xu, Mater. Sci. Eng. C 73 (2017) 80-89.
DOI URL |
[9] |
T. Nagase, M. Todai, T. Hori, T. Nakano, J. Alloy Compd. 753 (2018) 412-421.
DOI URL |
[10] |
Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Mater. Sci. Eng. A 491 (2008) 154-158.
DOI URL |
[11] |
B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, H.Z. Fu, Mater. Sci. Eng. A 498 (2008) 482-486.
DOI URL |
[12] |
S.Y. Chen, Y. Tong, K.K. Tseng, J.W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, P.K. Liaw, Scr. Mater. 158 (2019) 50-56.
DOI URL |
[13] |
R. Feng, M.C. Gao, C. Zhang, W. Guo, J.D. Poplawsky, F. Zhang, J.A. Hawk, J.C. Neuefeind, Y. Ren, P.K. Liaw, Acta Mater. 146 (2018) 280-293.
DOI URL |
[14] |
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Mater. Des. 81 (2015) 87-94.
DOI URL |
[15] |
M. Niinomi, Biomaterials 24 (2003) 2673-2683.
PMID |
[16] |
M. Niinomi, J. Mech. Behav. Biomed. Mater. 1 (2008) 30-42.
DOI PMID |
[17] |
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18 (2010) 1758-1765.
DOI URL |
[18] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
[19] | O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Wood-ward, J. Mater. Sci. Technol. 47 (2012) 4062-4074. |
[20] |
T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama, T. Nakano, Mater. Sci. Eng. C 107 (2020) 110322.
DOI URL |
[21] |
Y. Okazaki, Curr. Opin. Solid State Mater. Sci. 5 (2001) 45-53.
DOI URL |
[22] |
DJ.M. King, S.C. Middleburgh, A.G. McGregor, M.B. Cortie, Acta Mater. 104 (2016) 172-179.
DOI URL |
[23] |
X. Yang, Y. Zhang, Mater. Chem. Phys. 132 (2012) 233-238.
DOI URL |
[24] |
J.W. Yeh, JOM 65 (2013) 1759-1771.
DOI URL |
[25] |
Z. Wang, S. Guo, C.T. Liu, JOM 66 (2014) 1966-1972.
DOI URL |
[26] |
K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, Mater. Res. Lett. 3 (2014) 95-99.
DOI URL |
[27] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10 (2008) 534-538.
DOI URL |
[28] |
S. Guo, Q. Hu, C. Ng, C.T. Liu, Intermetallics 41 (2013) 96-103.
DOI URL |
[29] |
X. Yang, Y. Zhang, Mater. Chem. Phys. 132 (2012) 233-238.
DOI URL |
[30] |
G. Wang, Q. Liu, J. Yang, X. Li, X. Sui, Y. Gu, Y. Liu, Int. J. Refract. Met. Hard Mater. 84 (2019) 104988.
DOI URL |
[31] |
C.L. Liu, Z.J. Li, C.F. Hong, P.Q. Dai, J.F. Chen, Int. J. Refract. Met. Hard Mater. 93 (2020) 105357.
DOI URL |
[32] |
M. Zadra, Mater. Sci. Eng. A 583 (2013) 105-113.
DOI URL |
[33] |
L.W. Ma, C.Y. Chung, Y.X. Tong, Y.F. Zheng, J. Mater. Eng. Perform. 20 (2011) 783-786.
DOI URL |
[34] |
K.A. Nazari, A. Nouri, T. Hilditch, Mater. Lett. 140 (2015) 55-58.
DOI URL |
[35] |
Z. Wu, J. Zhang, T. Shi, F. Zhang, L. Lei, H. Xiao, Z. Fu, J. Mater. Sci. Technol. 33 (2017) 1172-1176.
DOI URL |
[36] |
H. Yu, Y. Sun, L. Hu, H. Zhou, Z. Wan, Mater. Des. 104 (2016) 265-275.
DOI URL |
[37] |
T. Xiang, Z. Cai, P. Du, K. Li, Z. Zhang, G.Q. Xie, J. Mater. Sci. Technol. 90 (2021) 150-158.
DOI |
[38] |
Q. Liu, G. Wang, X. Sui, Y. Liu, X. Li, J. Yang, J. Mater. Sci. Technol. 35 (2019) 2600-2607.
DOI URL |
[39] |
J. Eckert, C.J. Holzer, E.C. Krill, L.W. Johnson, J. Mater. Res. 7 (1992) 1751-1761.
DOI URL |
[40] |
H.J. Qiu, G. Fang, Y. Wen, P. Liu, G.Q. Xie, X. Liu, S. Sun, J. Mater. Chem. A 7 (2019) 6499-6506.
DOI URL |
[41] | C.D. Gómez-Esparza, F.J. Baldenebro-López, C.R. Santillán-Ro-dríguez, I. Estrada-Guel, J.A. Matutes-Aquino, J.M. Herrera-Ramírez, R. Martínez-Sánchez, J. Alloy Compd. 615 (2014) S317-S323. |
[42] | H. Zhang, H. Shen, X. Che, L. Wang, Chin. J. Rare Met. 76 (2011) 1583-1595. |
[43] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[44] |
J. Hu, J. Zhang, H. Xiao, L. Xie, X. Zu, J. Alloy Compd. 879 (2021) 160482.
DOI URL |
[45] |
S.P. Wang, J. Xu, Intermetallics 95 (2018) 59-72.
DOI URL |
[46] |
L. Yan, H. Zhang, W. Tao, X. Huang, Y. Li, J. Wu, H. Chen, Mater. Sci. Eng. A 585 (2013) 408-414.
DOI URL |
[47] | Y. Li, B. Yang, P. Zhang, Y. Nie, X. Yuan, Q. Lei, Y. Li, Mater. Today Commun. 27 (2021) 102266. |
[48] |
T.Y. Liu, J.C. Huang, W.S. Chuang, H.S. Chou, J.Y. Wei, C.Y. Chao, Y.C. Liao, J.S.C. Jang, Materials 12 (2019) 3508 (Basel).
DOI URL |
[49] |
P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, R.S. Kottada, Mater. Des. 134 (2017) 426-433.
DOI URL |
[50] |
S. Chen, K.K. Tseng, Y. Tong, W. Li, C.W. Tsai, J.W. Yeh, P.K. Liaw, J. Alloy Compd. 795 (2019) 19-26.
DOI URL |
[51] | R. Labusch, Phys. Status Solidi 41 (1970) 659-669. |
[52] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloy Compd. 509 (2011) 6043-6048.
DOI URL |
[53] |
S.P. Wang, J. Xu, Mater. Sci. Eng. C 73 (2017) 80-89.
DOI URL |
[54] |
S.P. Wang, J. Xu, Intermetallics 95 (2018) 59-72.
DOI URL |
[55] |
T. Hori, T. Nagase, M. Todai, A. Matsugaki, T. Nakano, Scr. Mater. 172 (2019) 83-87.
DOI URL |
[56] |
V.T. Nguyen, M. Qian, Z. Shi, T. Song, L. Huang, J. Zou, Intermetallics 101 (2018) 39-43.
DOI URL |
[57] |
R. Wang, Y. Tang, S. Li, H. Zhang, Y. Ye, L.A. Zhu, Y. Ai, S. Bai, Mater. Des. 162 (2019) 256-262.
DOI URL |
[58] |
W. Zhang, S. Zhang, H. Liu, L. Ren, Q. Wang, Y. Zhang, J. Mater. Sci. Technol. 88 (2021) 158-167.
DOI |
[59] | 10993-5 ISO. Biological evaluation of medical devices: tests for in vitro cyto- toxicity, 2009. |
[60] |
Z. Lei, H. Zhang, E. Zhang, J. You, X. Ma, X. Bai, Mater. Sci. Eng. C 92 (2018) 121-131.
DOI URL |
[61] | A. Takeuchi, A. Inoue, Mater.Trans 46 (2005) 2817-2829. |
[62] |
B. Kang, J. Lee, H.J. Ryu, S.H. Hong, Mater. Sci. Eng. A 712 (2018) 616-624.
DOI URL |
[63] |
C. Lee, Y. Chou, G. Kim, M.C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J.D. Poplawsky, G. Song, Y. Ren, Y.C. Chou, P.K. Liaw, Adv. Mater. 32 (2020) 2004029.
DOI URL |
[64] | R. Labusch, Phys. Status Solidi 41 (1970) 659-669. |
[65] |
R.L. Fleisgher, Acta Metall. 9 (1961) 996-100 0.
DOI URL |
[66] |
L.A. Gypen, A. Deruyttere, J. Mater. Sci. 12 (1977) 1034-1038.
DOI URL |
[67] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloy Compd. 509 (2011) 6043-6048.
DOI URL |
[68] |
J. Hu, J. Zhang, H. Xiao, L. Xie, X. Zu, J. Alloy Compd. 879 (2021) 160482.
DOI URL |
[69] |
F. Tian, L. Delczeg, N. Chen, L.K. Varga, J. Shen, L. Vitos, Phys. Rev. B 88 (2013) 085128.
DOI URL |
[70] |
E.P. George, W.A. Curtin, C.C. Tasan, Acta Mater. 188 (2020) 435-474.
DOI URL |
[71] | Z.P. Wang, Q.H. Fang, J. Li, B. Liu, Y. Liu, J. Mater. Sci. Technol. 02 (2018) 107-112. |
[72] |
I. Ondicho, B. Alunda, N. Park, Intermetallics 136 (2021) 107239.
DOI URL |
[73] |
Y. Wang, L.L. Shi, D.L. Duan, L. Shu, X. Jian, Mater. Sci. Eng. C 37 (2014) 292-304.
DOI URL |
[74] |
W. Yang, Y. Liu, S. Pang, P.K. Liaw, T. Zhang, Intermetallics 124 (2020) 106845.
DOI URL |
[1] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[2] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[3] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[4] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
[5] | Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy [J]. J. Mater. Sci. Technol., 2022, 113(0): 48-60. |
[6] | Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process [J]. J. Mater. Sci. Technol., 2022, 113(0): 90-104. |
[7] | Yinghao Zhou, Xiyu Yao, Wenfei Lu, Dandan Liang, Xiaodi Liu, Ming Yan, Jun Shen. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 107(0): 124-135. |
[8] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[9] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
[10] | Yunwei Pan, Anping Dong, Yang Zhou, Dafan Du, Donghong Wang, Guoliang Zhu, Baode Sun. Effects of V addition on the mechanical properties at elevated temperatures in a γ"-strengthened NiCoCr-based multi-component alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 290-300. |
[11] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[12] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[13] | Pengsheng Xue, Lida Zhu, Jinsheng Ning, Peihua Xu, Shuhao Wang, Zhichao Yang, Yuan Ren, Guiru Meng. The crystallographic texture and dependent mechanical properties of the CrCoNi medium-entropy alloy by laser remelting strategy [J]. J. Mater. Sci. Technol., 2022, 111(0): 245-255. |
[14] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
[15] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||