J. Mater. Sci. Technol. ›› 2022, Vol. 99: 82-100.DOI: 10.1016/j.jmst.2021.05.028
• Research article • Previous Articles Next Articles
Kun Yanga, Jirong Shib, Lei Wanga,*(), Yingzhi Chena, Chunyong Liangc, Lei Yangc, Lu-Ning Wanga,*(
)
Received:
2021-03-14
Revised:
2021-05-20
Accepted:
2021-05-24
Published:
2022-02-10
Online:
2022-02-09
Contact:
Lei Wang,Lu-Ning Wang
About author:
luning.wang@ustb.edu.cn (L.- N. Wang).1These authors contributed equally to this work.
Kun Yang, Jirong Shi, Lei Wang, Yingzhi Chen, Chunyong Liang, Lei Yang, Lu-Ning Wang. Bacterial anti-adhesion surface design: Surface patterning, roughness and wettability: A review[J]. J. Mater. Sci. Technol., 2022, 99: 82-100.
Fig. 1. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and methods of measuring bacteria-surface adhesion force. (a) The representative DLVO curve showing the relation between interaction energy and separation distance. The total interactions include van der Waals interactions and electrostatic interactions. Reproduced with permission [31]. Copyright 2014, Elsevier. (b) The cartoons showing the preparation process of bacterial probe (top image) and the measurement process of single-cell force spectroscopy (SCFS) (bottom image). Reproduced with permission [49]. Copyright 2017, Elsevier. (c) The cartoon at the left showing the single cell lateral force microscopy. The AFM topography images before (middle image) and after (right image) scanning with corresponding force value, to distinguish the bacterial displacement. Reproduced with permission [50]. Copyright 2018, AIP Publishing.
Fig. 2. Schematic diagram of strategies to measure bacteria-surface adhesion force and calculate the interaction energy on modified surface with patterning, roughness and wettability. Bacterial probe reflects the change of the contact area on patterned or irregular surfaces or the number of hydrogen bonds on hydrophobic/hydrophilic surfaces. Standard AFM tip could measure the bacterial lateral adhesion force and the size of attached bacteria. Microfluidic devices could track single bacterial activity near a surface, like swimming, movement and adhesion. The interaction energy between bacteria and modified surfaces is based on DLVO or extended DLVO (XDLVO) theory.
Fig. 3. SEM images of different patterned surface. (a) Nanospikes on black silicon (reactive ion etching (RIE) treatment), the insert showing the side view image. Reprinted with permission from [58]. Copyright 2013, Springer Nature. (b) TiO2 nanotube array with the diameter of 80 nm (anodizing treatment). Reproduced with permission [59]. Copyright 2017, Elsevier. (c) Micro wells on silicon wafer (photolithography and deep RIE). Reproduced with permission [60]. Copyright 2015, Elsevier. (d) Nanoripples on steel surface (femtosecond laser treatment). Reproduced with permission [61]. Copyright 2017, Elsevier. (e) Micro grooves on polydimethylsiloxane (PDMS) surface (photolithography and RIE). Reproduced with permission [62]. Copyright 2005, Royal Society of Chemistry. (f) Submicro pillars on 316L stainless steel surface (femtosecond laser treatment). Reproduced with permission [63]. Under a CC-BY License, Copyright 2018, Springer Nature. (g) Long submicro pillars silicon surface (vapor-liquid-solid growth method). Reprinted with permission from [64]. Copyright 2013, American Chemical Society. (h) Hexagonal micro pillars PDMS surface (photolithography). Reproduced with permission [65]. Copyright 2014, Elsevier. (i) Micro protrusions with nano structures on titanium (femtosecond laser treatment), the insert showing the nanostructures on the micro protrusions. Reprinted with permission from [66]. Copyright 2011, American Chemical Society.
Fig. 4. The antibacterial efficiency and feature size of different surface patterns. The feature size refers to the diameter of high-aspect-ratio nanostructures, nanotubes, micro wells, submicro pillars, micro pillars or micro protrusions and the line width of nanoripples or micro grooves. The number of attached bacteria on flat plane or rough surface (meeting industry standards) is used for normalization. The bacterial species and evaluation methods of antibacterial efficiency are neglected. The black dotted line showing the antibacterial efficiency of 50%. The blue dotted box at the left showing high-aspect-ratio nanostructures have the best antibacterial ability due to the bactericidal capacity; the red dotted box in the middle showing that some patterned surfaces with feature size close to 1 μm have anti-adhesion ability; the purple dotted box at the right showing that larger patterns trap bacteria in the valleys. Data are collected from literatures [56, 58, [60], [61], [62], [63], [64], [65], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94]].
Fig. 5. The mechano-bactericidal mechanism of high-aspect-ratio nanostructures. Pseudomonas aeruginosa (P. aeruginosa) sinking on cicada wing surface (a) SEM top view and (b) FIB-SEM image. Reproduced with permission [67]. Copyright 2012, John Wiley and Sons. The biophysical model (c) and simulation results (d, e) of bacterial membrane rupture on nanospikes. The bacterial membrane stretches between nanospikes until rupture. Reproduced with permission [95]. Copyright 2013, Elsevier. (f) The cartoon at the top showing the puncturing process with AFM tip. Force spectrum of AFM probe showing the information of puncturing Salmonella typhimurium, including the bacterial height and the force value required to puncture the bacterium. The time-lapse images at the bottom showing the viability of bacteria after repeated puncturing, in which the white arrows indicating the reproduction of bacteria. Reprinted with permission from [108]. Copyright 2009, American Chemical Society. (g) The protein interaction and abundance diagram after Escherichia coli (E. coli) membrane deformed by nanospikes. The SEM images at the bottom showing the deformed bacteria. Reproduced with permission [106]. Under a CC-BY License, Copyright 2020, Springer Nature.
Fig. 6. The bacterial adhesion on different patterned surfaces. (a) Comparison of S. aureus adhesion force and friction coefficient on TiO2 nanotubes with different diameters. The illustration showing a cartoon of the bacterial probe on nanotubes. Reproduced with permission [59]. Copyright 2017, Elsevier. AFM topographic images of (b, c) S. aureus and (d, e) P. aeruginosa remained on micro wells surface and smooth surface after scanning with contact mode. The insets showing the adhesion models. Reproduced with permission [127]. Copyright 2006, Elsevier. (f) The cartoon at the top showing Neisseria gonorrhoeae with pili in the micro groove. The bright field images showing the typical time sequence of bacterial movement. Reproduced with permission [143]. Copyright 2011, John Wiley and Sons. (g) The trace of Myxococcus xanthus within circular grooves. Red line showing the trace of a single bacterium. Reproduced with permission [144]. Copyright 2015, Elsevier. (h) The cartoon at the top showing SCFS measurement on the submicro pillar structures. The adhesion force of S. aureus on short submicro pillars with spacing of 200 nm, 400 nm and 800 nm respectively. Reprinted with permission from [145]. Copyright 2016, American Chemical Society. (i) Comparison of the interaction energy of Sporomusa ovata on long submicro pillars in vertical or parallel direction in culture medium with 0 mM or 200 mM NaCl. The SEM images showing unligned adhesion with 0 mM NaCl and aligned adhesion with 200 mM NaCl. Reprinted with permission from [56]. Copyright 2014, American Chemical Society. (j) SEM images of taro leaf (left image). The red square frame indicates the boundary area and blue square frame indicates the center area. AFM adhesion force mapping at micro protrusion center region (middle image) and micron protrusion boundary (right image). Reprinted with permission from [146]. Copyright 2011, American Chemical Society.
Fig. 7. The normalized number of adherent cells and roughness parameters (used in average roughness Ra or root mean square roughness RMS). Each group of data is shown as different colors or symbols. Adherent bacterial number on the minimum roughness surface is used for normalization in each group of data. The bacterial species and evaluation methods of antibacterial effect are neglected. At the lower roughness region (Ra or RMS< 6 nm), it shows a negative correlation between bacterial adhesion and nano roughness. At higher roughness region, it shows a positive correlation between bacterial adhesion and submicron or micron roughness. Generally, nano scale roughness surface provides better anti-adhesion property than smooth surface or large scale roughness surface. Data are collected from literatures [21, 52, [155], [156], [157], [158], [159], [160], [161], [162], [163], [164], [165], [166], [167], [168]].
Classification | Material (surface treatment) | Ra | Rq/RMS | Bacterial species | Correlation of roughness and adhesion | Ref. |
---|---|---|---|---|---|---|
Nano roughness | Glass (Ti film) | 0.64-1.47 nm | 0.87-2.25 nm | S. aureus, P. aeruginosa | Negative | [ |
Nano roughness | Glass (etched) | 1.3-2.1 nm | 1.6-2.8 nm | P. issachenkonii | Negative | [ |
Nano roughness | Glass (etched) | 1.3-2.1 nm | 1.6-2.8 nm | E. coli, S. aureus, P. aeruginosa | Negative | [ |
Nano roughness | Glass (Ti film) | 1.58-4.82 nm | 2.00-6.13 nm | E. coli | Negative | [ |
Nano roughness | Ti (ECAP) | 0.16-0.21 nm | 0.23-0.29 nm | S. aureus, P. aeruginosa | Negative | [ |
Nano roughness | Glass (silanized) | ― | 0.16-0.73 nm | E. coli | Positive | [ |
Nano roughness | SS 316L (Si ion implantation) | 0.206-0.506 nm | 0.259-0.677 nm | S. aureus, S. epidermidis | Negative | [ |
Nano roughness | Ti (YSZ film) | ― | 11.58-17.99 nm | E. coli, S. aureus | Positive | [ |
Nano roughness | SS 316L (carbon coatings) | 4.7-17.3 nm. | ― | E. coli, P. aeruginosa | Negative | [ |
Nano roughness | Ti-6Al-4V, Ti, Co-Cr-Mo, SS 316L, Oxinium | 1.8-30.0 nm | ― | S. epidermidis | Positive | [ |
Nano roughness | marble, granite, PP, SS 304/316 | 2-22 nm | ― | S. aureus, S. xylosus | Positive | [ |
Submicron roughness | YSZ bio-ceramic | 1.1-205 nm | ― | S. aureus | Positive | [ |
Submicron roughness | Ti (etched) | ― | 10-500 nm | E. coli | Positive | [ |
Submicron roughness | Ti (etched) | 0.31-0.80 μm | ― | E. coli | Negative | [ |
Submicron roughness | SS 304 | ― | 25.20-986 nm | Eight food related bacteria | Positive | [ |
Submicron roughness | SS 316L, Ti-6Al-4V | 113-463 nm | ― | E. coli, S. aureus | Positive | [ |
Micron roughness | SS 316L, Si | 0.023-1.89 μm | ― | Nine oral bacteria | Positive | [ |
Micron roughness | Ti/ZrO2(silanized) | 0.09-2.98 μm | ― | S. sanguinis | Positive | [ |
S. epidermidis | None | [ | ||||
Micron roughness | PMMA, cyclic olefin copolymer | 0.01, 0.1, 0.4, 1, 2, 5 μm | ― | P. fluorescens | Adhesion most at Ra=2 μm | [ |
Micron roughness | SS 316L (shot peened) | 0.09-8.14 μm | 0.13-10.10 μm | S. aureus, S. epidermidis | Negative | [ |
Micron roughness | Bioactive glass (fs laser treated) | 0.42-6.25 μm | ― | S. aureus, E. coli, P. aeruginosa | Negative | [ |
Micron roughness | Ti-6Al-4V | 0.283-10.835 μm | ― | S. sanguinis | Positive | [ |
Table 1 Surface roughness and bacterial adhesion
Classification | Material (surface treatment) | Ra | Rq/RMS | Bacterial species | Correlation of roughness and adhesion | Ref. |
---|---|---|---|---|---|---|
Nano roughness | Glass (Ti film) | 0.64-1.47 nm | 0.87-2.25 nm | S. aureus, P. aeruginosa | Negative | [ |
Nano roughness | Glass (etched) | 1.3-2.1 nm | 1.6-2.8 nm | P. issachenkonii | Negative | [ |
Nano roughness | Glass (etched) | 1.3-2.1 nm | 1.6-2.8 nm | E. coli, S. aureus, P. aeruginosa | Negative | [ |
Nano roughness | Glass (Ti film) | 1.58-4.82 nm | 2.00-6.13 nm | E. coli | Negative | [ |
Nano roughness | Ti (ECAP) | 0.16-0.21 nm | 0.23-0.29 nm | S. aureus, P. aeruginosa | Negative | [ |
Nano roughness | Glass (silanized) | ― | 0.16-0.73 nm | E. coli | Positive | [ |
Nano roughness | SS 316L (Si ion implantation) | 0.206-0.506 nm | 0.259-0.677 nm | S. aureus, S. epidermidis | Negative | [ |
Nano roughness | Ti (YSZ film) | ― | 11.58-17.99 nm | E. coli, S. aureus | Positive | [ |
Nano roughness | SS 316L (carbon coatings) | 4.7-17.3 nm. | ― | E. coli, P. aeruginosa | Negative | [ |
Nano roughness | Ti-6Al-4V, Ti, Co-Cr-Mo, SS 316L, Oxinium | 1.8-30.0 nm | ― | S. epidermidis | Positive | [ |
Nano roughness | marble, granite, PP, SS 304/316 | 2-22 nm | ― | S. aureus, S. xylosus | Positive | [ |
Submicron roughness | YSZ bio-ceramic | 1.1-205 nm | ― | S. aureus | Positive | [ |
Submicron roughness | Ti (etched) | ― | 10-500 nm | E. coli | Positive | [ |
Submicron roughness | Ti (etched) | 0.31-0.80 μm | ― | E. coli | Negative | [ |
Submicron roughness | SS 304 | ― | 25.20-986 nm | Eight food related bacteria | Positive | [ |
Submicron roughness | SS 316L, Ti-6Al-4V | 113-463 nm | ― | E. coli, S. aureus | Positive | [ |
Micron roughness | SS 316L, Si | 0.023-1.89 μm | ― | Nine oral bacteria | Positive | [ |
Micron roughness | Ti/ZrO2(silanized) | 0.09-2.98 μm | ― | S. sanguinis | Positive | [ |
S. epidermidis | None | [ | ||||
Micron roughness | PMMA, cyclic olefin copolymer | 0.01, 0.1, 0.4, 1, 2, 5 μm | ― | P. fluorescens | Adhesion most at Ra=2 μm | [ |
Micron roughness | SS 316L (shot peened) | 0.09-8.14 μm | 0.13-10.10 μm | S. aureus, S. epidermidis | Negative | [ |
Micron roughness | Bioactive glass (fs laser treated) | 0.42-6.25 μm | ― | S. aureus, E. coli, P. aeruginosa | Negative | [ |
Micron roughness | Ti-6Al-4V | 0.283-10.835 μm | ― | S. sanguinis | Positive | [ |
Fig. 8. The antibacterial mechanism of roughness. (a) Comparison of S. aureus adhesion force obtained from SCFS on the surface with different nano roughness (RMS = 0.1 nm, 7 nm, 24 nm, 35 nm). The cartoon at the left showing the different number of macromolecules tethered to these surfaces. Reprinted with permission from [175]. Copyright 2019, the Royal Society of Chemistry. (b) Schematic depiction showing different deformation and contact area of bacteria (fixed on the AFM cantilever) when touching the different scale roughness surfaces. Reproduced with permission [180]. Copyright 2015, John Wiley and Sons. (c) The cartoon showing the different contact area of bacteria on smooth surface, nano roughness surface and micron roughness surface. Reproduced with permission [163]. Copyright 2014, Elsevier. (d) Comparison of E. coli density on stainless steel surfaces with different roughness (Ra = 0.04 μm, 0.14 μm, 1.37 μm) before and after rinsing with vortex water (2000 rpm, 15 min). Reproduced with permission [181]. Copyright 2010, Elsevier. (e) Comparison of the effect of average roughness (Ra) and peak density (Spd) on the interaction energy. The schematic diagram at the left showing the strategy of combining surface element integration method with XDLVO theory, in which the separation distance (shown as h1, h2, h3) of each area is calculated with the surface profile f(r, θ) and bacterial size (diameter a). Reproduced with permission [57]. Copyright 2014, Elsevier.
Classification | Material (surface treatment) | WCA | Bacterial species | Correlation of WCA and adhesion | Ref. |
---|---|---|---|---|---|
Moderate wettable | Ti, Ti6Al4V (laser treated) | 31.9°-74.3° | S. aureus | Positive | [ |
Moderate wettable | Ti-35Nb-7Zr-6Ta (laser nitriding) | 27.1°-82.9° | S. aureus | Positive | [ |
Moderate wettable | 11 different glass and metal oxide-coated glass | 9°-68° | E. coli, B. cepacia, P. aeruginosa, B. subtilis | None | [ |
Moderate wettable | SS 304 (laser micro-polishing) | 49°-96° | E. coli | Negative | [ |
Moderate wettable | SS 316L (plasma spraying HMDSO) | 24°-102° | S. aureus | Negative | [ |
Moderate wettable | CoCr alloy (carbon film) | 65.4°-90.3° | S. mutans, A. viscosus, C. albicans | Positive | [ |
Moderate wettable | Ti-6Al-4V (SLM) | 95.3°-114.5° | S. aureus | Positive | [ |
Moderate wettable | Ti/ZrO2 (silanized) | 41.4°-107.6° | S. epidermidis | Positive | [ |
S. sanguinis | None | [ | |||
Moderate wettable | poly(vinylidene fluoride) (grafted poly(N-isopropylacrylamide)) | 77°-106° | E. coli | Positive | [ |
Moderate wettable | Teflon, PC, PU, Ti, Silicone, Borosilicate glass | 20.9°-111.6° | E. coli, P. aeruginosa, S. epidermidis, C. albicans | Positive | [ |
Moderate wettable | Contact lenses and recipients (Glass, PMMA, Silicone rubber) | 30°-107° | S. aureus, P. aeruginosa | Negative | [ |
Moderate wettable | Polyethylene (fs laser treated) | 64.5°-120.5° | E. coli | Negative | [ |
S. aureus | None | [ | |||
Superhydrophilic | SS 316 (TiO2 coating) | 5° (71.2°) | E. coli | Inhibition | [ |
Superhydrophilic | Supramolecular gelators (rose structures) | 7° (58°) | E. coli | Inhibition | [ |
Superhydrophilic | Degummed silk (coat PS nanospheres) | 10° (60°) | S. aureus, E. coli | Inhibition | [ |
Superhydrophobic | SS 316 (CNT-PTFE coating) | 154.6° (71.2°) | E. coli | Inhibition | [ |
Superhydrophobic | Supramolecular gelators (rose structures) | 154° (58°) | E. coli | Inhibition | [ |
Superhydrophobic | Ti (anodizing and silanized) | 156° | S. aureus | Inhibition | [ |
Superhydrophobic | Ti(anodizing and myristic acid) | 176.3° (67.6°) | Pseudomonas sp, Bacillus sp | Inhibition | [ |
Superhydrophobic | Fluorinated Silica Colloid | 167.7° (88.3°) | S. aureus, P. aeruginosa | Inhibition | [ |
Superhydrophobic | Silicone elastomer (AACVD) | 165° (95°) | S. aureus, E. coli | Inhibition | [ |
Superhydrophobic | Pure Ti (fs laser treated) | 166° (73°) | S. aureus | Promotion | [ |
P. aeruginosa | Inhibition | [ | |||
Superhydrophobic | Pure Ti (discharge plasma with Ar, O2 and HMDSO gases) | 150° (35°) | S. mutans | Inhibition | [ |
Table 2 Wettability and bacterial adhesion.
Classification | Material (surface treatment) | WCA | Bacterial species | Correlation of WCA and adhesion | Ref. |
---|---|---|---|---|---|
Moderate wettable | Ti, Ti6Al4V (laser treated) | 31.9°-74.3° | S. aureus | Positive | [ |
Moderate wettable | Ti-35Nb-7Zr-6Ta (laser nitriding) | 27.1°-82.9° | S. aureus | Positive | [ |
Moderate wettable | 11 different glass and metal oxide-coated glass | 9°-68° | E. coli, B. cepacia, P. aeruginosa, B. subtilis | None | [ |
Moderate wettable | SS 304 (laser micro-polishing) | 49°-96° | E. coli | Negative | [ |
Moderate wettable | SS 316L (plasma spraying HMDSO) | 24°-102° | S. aureus | Negative | [ |
Moderate wettable | CoCr alloy (carbon film) | 65.4°-90.3° | S. mutans, A. viscosus, C. albicans | Positive | [ |
Moderate wettable | Ti-6Al-4V (SLM) | 95.3°-114.5° | S. aureus | Positive | [ |
Moderate wettable | Ti/ZrO2 (silanized) | 41.4°-107.6° | S. epidermidis | Positive | [ |
S. sanguinis | None | [ | |||
Moderate wettable | poly(vinylidene fluoride) (grafted poly(N-isopropylacrylamide)) | 77°-106° | E. coli | Positive | [ |
Moderate wettable | Teflon, PC, PU, Ti, Silicone, Borosilicate glass | 20.9°-111.6° | E. coli, P. aeruginosa, S. epidermidis, C. albicans | Positive | [ |
Moderate wettable | Contact lenses and recipients (Glass, PMMA, Silicone rubber) | 30°-107° | S. aureus, P. aeruginosa | Negative | [ |
Moderate wettable | Polyethylene (fs laser treated) | 64.5°-120.5° | E. coli | Negative | [ |
S. aureus | None | [ | |||
Superhydrophilic | SS 316 (TiO2 coating) | 5° (71.2°) | E. coli | Inhibition | [ |
Superhydrophilic | Supramolecular gelators (rose structures) | 7° (58°) | E. coli | Inhibition | [ |
Superhydrophilic | Degummed silk (coat PS nanospheres) | 10° (60°) | S. aureus, E. coli | Inhibition | [ |
Superhydrophobic | SS 316 (CNT-PTFE coating) | 154.6° (71.2°) | E. coli | Inhibition | [ |
Superhydrophobic | Supramolecular gelators (rose structures) | 154° (58°) | E. coli | Inhibition | [ |
Superhydrophobic | Ti (anodizing and silanized) | 156° | S. aureus | Inhibition | [ |
Superhydrophobic | Ti(anodizing and myristic acid) | 176.3° (67.6°) | Pseudomonas sp, Bacillus sp | Inhibition | [ |
Superhydrophobic | Fluorinated Silica Colloid | 167.7° (88.3°) | S. aureus, P. aeruginosa | Inhibition | [ |
Superhydrophobic | Silicone elastomer (AACVD) | 165° (95°) | S. aureus, E. coli | Inhibition | [ |
Superhydrophobic | Pure Ti (fs laser treated) | 166° (73°) | S. aureus | Promotion | [ |
P. aeruginosa | Inhibition | [ | |||
Superhydrophobic | Pure Ti (discharge plasma with Ar, O2 and HMDSO gases) | 150° (35°) | S. mutans | Inhibition | [ |
Fig. 9. The antibacterial mechanism of wettability. Adhesion force histogram obtained from SCFS of Lactobacillus plantarum on (a) hydrophobic methyl-terminated monolayer and (b) hydrophilic hydroxyl-terminated monolayer. Reproduced with permission [48]. Copyright 2013, Elsevier. AFM topographic images of P. aeruginosa on (c) hydrophobic highly ordered pyrolytic graphite (HOPG) and (d) hydrophilic mica. The illustrations are the corresponding bacterial outlines. Reproduced with permission [212]. Copyright 2010, Elsevier. Representative force-distance curves for Staphylococcus epidermidis on (e) hydrophobic, dimethyldichlorosilane (DDS)-coated glass and (f) hydrophilic glass with retract curves after holding time of 0 s, 10 s, 60 s and 120 s. Reprinted with permission from [218]. Copyright 2008, American Chemical Society. (g) Schematics of coccoid-shaped S. aureus and long rod-shaped E. coli accumulation at the superhydrophilic and superhydrophobic stainless steel surfaces. S. aureus colonizes on the side wall and the gap of superhydrophilic surfaces and accumulates at the three-phase interface (air, liquid and solid) of superhydrophobic surfaces. E. coli swims to these two surfaces, but fails to attach to these surfaces. Reprinted with permission from [223]. Copyright 2019, American Chemical Society. The illustration showing the trapped air nanobubbles hindered S. aureus adhesion. Reprinted with permission from [153]. Copyright 2012, Taylor & Francis. (h) Comparison of the adhesion mechanism of Gram-negative bacteria on different wettability surfaces. Reproduced with permission [200]. Copyright 2017, Elsevier. (i) Comparison of the adhesion mechanism of Gram-positive bacteria on different wettability surfaces. Reprinted with permission from [226]. Copyright 2015, American Chemical Society.
[1] | R.D. Klein, S.J. Hultgren, Nat. Rev. Microbiol. 18 (2020) 211-226. |
[2] | C.R. Arciola, D. Campoccia, L. Montanaro, Nat. Rev. Microbiol. 16 (2018) 397-409. |
[3] | Z. Yuan, Y. He, C. Lin, P. Liu, K. Cai, J. Mater. Sci. Technol. 78 (2021) 51-67. |
[4] | T.F. Moriarty, U. Schlegel, S. Perren, R.G. Richards, J. Mater. Sci. Mater. Med. 21 (2010) 1031-1035. |
[5] | D. Liu, H. Yang, J. Li, J. Li, Y. Dong, C. Yang, Y. Jin, L. Yassir, Z. Li, D. Hernandez, D. Xu, F. Wang, J.A. Smith, J. Mater. Sci. Technol. 79 (2021) 101-108. |
[6] | D. Wang, M. Ramadan, S. Kumseranee, S. Punpruk, T. Gu, J. Mater. Sci. Technol. 57 (2020) 146-152. |
[7] | J. Li, Z. Liu, C. Du, X. Li, Corros. Sci. 173 (2020) 108763. |
[8] | C. Milani, S. Duranti, S. Napoli, G. Alessandri, L. Mancabelli, R. Anzalone, G. Longhi, A. Viappiani, M. Mangifesta, G.A. Lugli, S. Bernasconi, M.C. Os-siprandi, D.van Sinderen, M. Ventura, F. Turroni, Nat. Commun. 10 (2019) 1286. |
[9] | L. Radoshevich, P. Cossart, Nat. Rev. Microbiol. 16 (2018) 32-46. |
[10] | R. Fink, D. Okanovic, G. Drazic, A. Abram, M. Oder, M. Jevsnik, K. Bohinc, Int. J. Environ. Health Res. 27 (2017) 169-178. |
[11] | European Food Safety Authority, EFSA Journal 12 (2014) 3547. |
[12] | B.H. Liu, L.C. Yu, Colloids Surf. B 150 (2017) 98-105. |
[13] | M.A. Orman, M.P. Brynildsen, Nat. Commun. 6 (2015) 7983. |
[14] | J. Liu, A. Prindle, J. Humphries, M. Gabalda-Sagarra, M. Asally, D.Y. Lee, S. Ly, J. Garcia-Ojalvo, G.M. Suel, Nature 523 (2015) 550-554. |
[15] | A. Persat, C.D. Nadell, M.K. Kim, F. Ingremeau, A. Siryaporn, K. Drescher, N.S. Wingreen, B.L. Bassler, Z. Gitai, H.A. Stone, Cell 161 (2015) 988-997. |
[16] | U. Filipovic, R.G. Dahmane, S. Ghannouchi, A. Zore, K. Bohinc, Adv. Colloid Interface Sci. 283 (2020) 102228. |
[17] | L. Zhang, J. Guo, T. Yan, Y. Han, Appl. Surf. Sci. 434 (2018) 633-642. |
[18] | D.P. Linklater, V.A. Baulin, S. Juodkazis, R.J. Crawford, P. Stoodley, E.P. Ivanova, Nat. Rev. Microbiol. 19 (2021) 8-22. |
[19] | Y. Luan, S. Liu, M. Pihl, H.C. van der Mei, J. Liu, F. Hizal, C.-H. Choi, H. Chen, Y. Ren, H.J. Busscher, Curr. Opin. Colloid Interface Sci. 38 (2018) 170-189. |
[20] | J. Shi, S. Wang, X. Cheng, S. Chen, G. Liu, J. Mater. Sci. Technol. 70 (2021) 145-155. |
[21] | E.P. Ivanova, V.K. Truong, J.Y. Wang, C.C. Berndt, R.T. Jones, Yusuf II, I. Peake, H.W. Schmidt, C. Fluke, D. Barnes, R.J. Crawford, Langmuir 26 (2010) 1973-1982. |
[22] | S.B. Chinnaraj, P.G. Jayathilake, J. Dawson, Y. Ammar, J. Portoles, N. Jakubovics, J. Chen, J. Mater. Sci. Technol. 81 (2021) 151-161. |
[23] | V. Carniello, B.W. Peterson, H.C. van der Mei, H.J. Busscher, Adv. Colloid Inter- face Sci. 261 (2018) 1-14. |
[24] | H. Zheng, L. Liu, F. Meng, Y. Cui, Z. Li, E.E. Oguzie, F. Wang, J. Mater. Sci. Tech- nol. 84 (2021) 86-96. |
[25] | J.D.P. Valentin, X.H. Qin, C. Fessele, H. Straub, H.C. van der Mei, M.T. Buhmann, K. Maniura-Weber, Q. Ren, J. Colloid Interface Sci. 552 (2019) 247-257. |
[26] | L. Zhao, R. Chen, L. Lou, X. Jing, Q. Liu, J. Liu, J. Yu, P. Liu, J. Wang, Appl. Surf. Sci. 511 (2020) 145564. |
[27] | J. Bao, H. Li, Y. Xu, S. Chen, Z. Wang, C. Jiang, H. Li, Z. Wei, S. Sun, W. Zhao, C. Zhao, J. Mater. Sci. Technol. 78 (2021) 131-143. |
[28] | N. Lin, P. Berton, C. Moraes, R.D. Rogers, N. Tufenkji, Adv. Colloid Interface Sci. 252 (2018) 55-68. |
[29] | A. Elbourne, R.J. Crawford, E.P. Ivanova, J. Colloid Interface Sci. 508 (2017) 603-616. |
[30] | J. Sjollema, S.A.J. Zaat, V. Fontaine, M. Ramstedt, R. Luginbuehl, K. Thevissen, J. Li, H.C. van der Mei, H.J. Busscher, Acta Biomater 70 (2018) 12-24. |
[31] | S. Perni, E.C. Preedy, P. Prokopovich, Adv. Colloid Interface Sci. 206 (2014) 265-274. |
[32] | A. Elbourne, J. Chapman, A. Gelmi, D. Cozzolino, R.J. Crawford, V.K. Truong, J. Colloid Interface Sci. 546 (2019) 192-210. |
[33] | A.S. Utada, R.R. Bennett, J.C.N. Fong, M.L. Gibiansky, F.H. Yildiz, R. Golestanian, G.C.L. Wong, Nat. Commun. 5 (2014) 4913. |
[34] | P.D. Frymier, R.M. Ford, H.C. Berg, P.T. Cummings, Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 6195-6199. |
[35] | G. Li, L.-K. Tam, J.X. Tang, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 18355-18359. |
[36] | H. Wang, M. Sodagari, Y. Chen, X. He, B.-m.Z. Newby, L.-K. Ju, Colloids Surf., B 87 (2011) 415-422. |
[37] | N. Tufenkji, M. Elimelech, Langmuir 20 (2004) 10818-10828. |
[38] | A. Kumar, Y.P. Ting, Appl. Microbiol. Biotechnol. 100 (2016) 8843-8853. |
[39] | X. Sheng, Y.P. Ting, S.O. Pehkonen, J. Colloid Interface Sci. 310 (2007) 661-669. |
[40] | K. Zhao, B.S. Tseng, B. Beckerman, F. Jin, M.L. Gibiansky, J.J. Harrison, E. Lui- jten, M.R. Parsek, G.C.L. Wong, Nature 497 (2013) 388-391. |
[41] | J. Hou, D.H. Veeregowda, B. van de Belt-Gritter, H.J. Busscher, H.C. van der Mei, Appl. Environ. Microbiol. 84 (2018) e01516-e01517. |
[42] | S.L. Walker, J.A. Redman, M. Elimelech, Langmuir 20 (2004) 7736-7746. |
[43] | R. van der Westen, J. Sjollema, R. Molenaar, P.K. Sharma, H.C. van der Mei, H.J. Busscher, Langmuir 34 (2018) 4 937-4 944. |
[44] | R.B. McLay, H.N. Nguyen, Y.A. Jaimes-Lizcano, N.K. Dewangan, S. Alexandrova, D.F. Rodrigues, P.C. Cirino, J.C. Conrad, Langmuir 34 (2018) 1133-1142. |
[45] | C.N. Dominick, X.L. Wu, Biophys. J. 115 (2018) 588-594. |
[46] | Z. Ye, H. Liu, F. Wang, X. Wang, L. Wei, L. Xiao, Chem. Sci. 10 (2019) 1351-1359. |
[47] | Y.F. Dufrene, Trends Microbiol 23 (2015) 376-382. |
[48] | A. Beaussart, S. El-Kirat-Chatel, P. Herman, D. Alsteens, J. Mahillon, P. Hols, Y.F. Dufrene, Biophys. J. 104 (2013) 1886-1892. |
[49] | F. Alam, K. Balani, J. Mech. Behav. Biomed. Mater. 65 (2017) 872-880. |
[50] | K. Huttenlochner, N. Davoudi, C. Schlegel, M. Bohley, C. Müller-Renno, J.C. Au-rich, R. Ulber, C. Ziegler, Biointerphases 13 (2018) 051003. |
[51] | P. Dorig, P. Stiefel, P. Behr, E. Sarajlic, D. Bijl, M. Gabi, J. Voros, J.A. Vorholt, T. Zambelli, Appl. Phys. Lett. 97 (2010) 023701. |
[52] | S. Sharma, Y.A. Jaimes-Lizcano, R.B. McLay, P.C. Cirino, J.C. Conrad, Langmuir 32 (2016) 5422-5433. |
[53] | H. Wei, G. Yang, B. Wang, R. Li, G. Chen, Z. Li, Colloids Surf., B 154 (2017) 82-88. |
[54] | J.M. Thwala, M. Li, M.C. Wong, S. Kang, E.M. Hoek, B.B. Mamba, Langmuir 29 (2013) 13773-13782. |
[55] | N.P. Boks, W. Norde, H.C. van der Mei, H.J. Busscher, Microbiology 154 (2008) 3122-3133. |
[56] | K.K. Sakimoto, C. Liu, J. Lim, P. Yang, Nano Lett 14 (2014) 5471-5476. |
[57] | D. Siegismund, A. Undisz, S. Germerodt, S. Schuster, M. Rettenmayr, Acta Bio- mater 10 (2014) 267-275. |
[58] | E.P. Ivanova, J. Hasan, H.K. Webb, G. Gervinskas, S. Juodkazis, V.K. Truong, A.H. Wu, R.N. Lamb, V.A. Baulin, G.S. Watson, J.A. Watson, D.E. Mainwaring, R.J. Crawford, Nat. Commun. 4 (2013) 2838. |
[59] | R. An, Y. Dong, J. Zhu, C. Rao, Colloids Surf., B 159 (2017) 108-117. |
[60] | M. Yang, Y. Ding, X. Ge, Y. Leng, Colloids Surf., B 135 (2015) 549-555. |
[61] | N. Epperlein, F. Menzel, K. Schwibbert, R. Koter, J. Bonse, J. Sameith, J. Krüger, J. Toepel, Appl. Surf. Sci. 418 (2017) 420-424. |
[62] | M.V. Graham, A.P. Mosier, T.R. Kiehl, A.E. Kaloyeros, N.C. Cady, Soft Matter 9 (2013) 6235-6244. |
[63] | A.H.A. Lutey, L. Gemini, L. Romoli, G. Lazzini, F. Fuso, M. Faucon, R. Kling, Sci. Rep. 8 (2018) 10112. |
[64] | H.E. Jeong, I. Kim, P. Karam, H.J. Choi, P. Yang, Nano Lett 13 (2013) 2864-2869. |
[65] | R. Vasudevan, A.J. Kennedy, M. Merritt, F.H. Crocker, R.H. Baney, Colloids Surf., B 117 (2014) 225-232. |
[66] | E. Fadeeva, V.K. Truong, M. Stiesch, B.N. Chichkov, R.J. Crawford, J. Wang, E.P. Ivanova, Langmuir 27 (2011) 3012-3019. |
[67] | E.P. Ivanova, J. Hasan, H.K. Webb, V.K. Truong, G.S. Watson, J.A. Watson, V.A. Baulin, S. Pogodin, J.Y. Wang, M.J. Tobin, C. Lobbe, R.J. Crawford, Small 8 (2012) 2489-2494. |
[68] | J. Hasan, H.K. Webb, V.K. Truong, S. Pogodin, V.A. Baulin, G.S. Watson, J.A. Watson, R.J. Crawford, E.P. Ivanova, Appl. Microbiol. Biotechnol. 97 (2013) 9257-9262. |
[69] | G.S. Watson, D.W. Green, B.W. Cribb, C.L. Brown, C.R. Meritt, M.J. Tobin, J. Vongsvivut, M. Sun, A.P. Liang, J.A. Watson, ACS Appl. Mater. Interfaces 9 (2017) 24381-24392. |
[70] | G.S. Watson, D.W. Green, L. Schwarzkopf, X. Li, B.W. Cribb, S. Myhra, J.A. Wat-son, Acta Biomater 21 (2015) 109-122. |
[71] | P.M. Tsimbouri, L. Fisher, N. Holloway, T. Sjostrom, A.H. Nobbs, R.M. Meek, B. Su, M.J. Dalby, Sci. Rep. 6 (2016) 36857. |
[72] | J.V. Wandiyanto, T. Tamanna, D.P. Linklater, V.K. Truong, M. Al Kobaisi, V.A. Baulin, S. Joudkazis, H. Thissen, R.J. Crawford, E.P. Ivanova, J. Colloid In-terface Sci. 560 (2020) 572-580. |
[73] | D.P. Linklater, S. Juodkazis, R.J. Crawford, E.P. Ivanova, Materialia 5 (2019) 100197. |
[74] | Y. Yu, Q. Ran, X. Shen, H. Zheng, K. Cai, K. Cai, Colloids Surf., B 185 (2020) 110592. |
[75] | Z. Yuan, P. Liu, Y. Hao, Y. Ding, K. Cai, Colloids Surf., B 171 (2018) 597-605. |
[76] | Z. Peng, J. Ni, K. Zheng, Y. Shen, X. Wang, G. He, S. Jin, T. Tang, Int. J. Nanomed. 8 (2013) 3093-3105. |
[77] | B. Ercan, E. Taylor, E. Alpaslan, T.J. Webster, Nanotechnology 22 (2011) 295102. |
[78] | A. Pantazi, M. Vardaki, G. Mihai, D. Ionita, A.B. Stoian, M. Enachescu, I. Deme-trescu, Appl.Surf. Sci. 506 (2020) 144661. |
[79] | R. Helbig, D. Gunther, J. Friedrichs, F. Rossler, A. Lasagni, C. Werner, Biomater. Sci. 4 (2016) 1074-1078. |
[80] | F.H. Rajab, C.M. Liauw, P.S. Benson, L. Li, K.A. Whitehead, Food Bioprod. Pro-cess. 109 (2018) 29-40. |
[81] | F.H. Rajab, C.M. Liauw, P.S. Benson, L. Li, K.A. Whitehead, Colloids Surf.,B 160 (2017) 688-696. |
[82] | A . Cunha, A .-M. Elie, L. Plawinski, A.P. Serro, A.M. Botelho do Rego, A. Almeida, M.C. Urdaci, M.-C. Durrieu, R. Vilar, Appl. Surf. Sci. 360 (2016) 485-493. |
[83] | A. Minan, P.L. Schilardi, M. Fernandez Lorenzo de Mele, Mater. Sci. Eng., C 61 (2016) 199-206. |
[84] | J. Verran, A. Packer, P. Kelly, K.A. Whitehead, Lett. Appl. Microbiol. 50 (2010) 258-263. |
[85] | E.A. Cuello, L.E. Mulko, C.A. Barbero, D.F. Acevedo, E.I. Yslas, Colloids Surf., B 188 (2020) 110801. |
[86] | L.A. Gallarato, L.E. Mulko, M.S. Dardanelli, C.A. Barbero, D.F. Acevedo, E.I. Ys-las, Colloids Surf., B 150 (2017) 1-7. |
[87] | S. Ferraris, F. Warchomicka, C. Ramskogler, M. Tortello, A. Cochis, A. Scalia, G. Gautier di Confiengo, J. Keckes, L. Rimondini, S. Spriano, J. Mater. Process. Technol. 266 (2019) 518-529. |
[88] | L.C. Xu, M.E. Meyerhoff, C.A. Siedlecki, ActaBiomater 84 (2019) 77-87. |
[89] | A.I. Hochbaum, J. Aizenberg, Nano Lett 10 (2010) 3717-3721. |
[90] | R.S. Friedlander, H. Vlamakis, P. Kim, M. Khan, R. Kolter, J. Aizenberg, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 5624-5629. |
[91] | S. Hou, H. Gu, C. Smith, D. Ren, Langmuir 27 (2011) 2686-2691. |
[92] | X. Ge, C. Ren, Y. Ding, G. Chen, X. Lu, K. Wang, F. Ren, M. Yang, Z. Wang, J. Li, X. An, B. Qian, Y. Leng, Bioact. Mater. 4 (2019) 346-357. |
[93] | P. Kim, A.K. Epstein, M. Khan, L.D. Zarzar, D.J. Lipomi, G.M. Whitesides, J. Aizenberg, Nano Lett. 12 (2012) 527-533. |
[94] | E. Jafari Nodoushan, N.G. Ebrahimi, M. Ayazi, Appl. Surf. Sci. 423 (2017) 1054-1061. |
[95] | S. Pogodin, J. Hasan, V.A. Baulin, H.K. Webb, V.K. Truong, T.H. Phong Nguyen, V. Boshkovikj, C.J. Fluke, G.S. Watson, J.A. Watson, R.J. Crawford, E.P. Ivanova, Biophys. J. 104 (2013) 835-840. |
[96] | C.M. Bhadra, V.K. Truong, V.T. Pham, M. Al Kobaisi, G. Seniutinas, J.Y. Wang, S. Juodkazis, R.J. Crawford, E.P. Ivanova, Sci. Rep. 5 (2015) 16817. |
[97] | Y. Xue, J. Chen, L. Zhang, Y. Han, J. Mater. Sci. Technol. 88 (2021) 240-249. |
[98] | M. Jin, S. Yao, L.-N. Wang, Y. Qiao, A.A. Volinsky, Surf. Coat. Technol. 304 (2016) 459-467. |
[99] | J. Hasan, S. Jain, R. Padmarajan, S. Purighalla, V.K. Sambandamurthy, K. Chat-terjee, Mater.Des. 140 (2018) 332-344. |
[100] | S. Ferraris, A. Cochis, M. Cazzola, M. Tortello, A. Scalia, S. Spriano, L. Rimon- dini, Front Bioeng.Biotech. 7 (2019) 103. |
[101] | W. Wang, T.L. Li, H.M. Wong, P.K. Chu, R.Y.T. Kao, S. Wu, F.K.L. Leung, T.M. Wong, M.K.T. To, K.M.C. Cheung, K.W.K. Yeung,, Colloids Surf., B 141 (2016) 623-633. |
[102] | S. Mo, B. Mehrjou, K. Tang, H. Wang, K. Huo, A.M. Qasim, G. Wang, P.K. Chu, Chem. Eng. J. 392 (2020) 123736. |
[103] | B. Mehrjou, S. Mo, D. Dehghan-Baniani, G. Wang, A.M. Qasim, P.K. Chu, ACS Appl. Mater. Interfaces 11 (2019) 31605-31614. |
[104] | V.T. Pham, V.K. Truong, A. Orlowska, S. Ghanaati, M. Barbeck, P. Booms, A.J. Fulcher, C.M. Bhadra, R. Buividas, V. Baulin, C.J. Kirkpatrick, P. Doran, D.E. Mainwaring, S. Juodkazis, R.J. Crawford, E.P. Ivanova, ACS Appl. Mater. Interfaces 8 (2016) 22025-22031. |
[105] | D.P. Linklater, S. Juodkazis, S. Rubanov, E.P. Ivanova, ACS Appl. Mater. Inter- faces 9 (2017) 29387-29393. |
[106] | J. Jenkins, J. Mantell, C. Neal, A. Gholinia, P. Verkade, A.H. Nobbs, B. Su, Nat. Commun. 11 (2020) 1626. |
[107] | C.D. Bandara, S. Singh, I.O. Afara, A. Wolff, T. Tesfamichael, K. Ostrikov, A. Oloyede, ACS Appl. Mater. Interfaces 9 (2017) 6746-6760. |
[108] | Z. Suo, R. Avci, M. Deliorman, X. Yang, D.W. Pascual, Langmuir 25 (2009) 4588-4594. |
[109] | L.-N. Wang, J.-L. Luo, Appl. Surf. Sci. 258 (2012) 4830-4833. |
[110] | L.N. Wang, J.L. Luo, Mater. Sci. Eng., C 31 (2011) 748-754. |
[111] | S. Ismail, Z.A. Ahmad, A. Berenov, Z. Lockman, Corros. Sci. 53 (2011) 1156-1164. |
[112] | S. Amin Yavari, L. Loozen, F.L. Paganelli, S. Bakhshandeh, K. Lietaert, J.A. Groot, A.C. Fluit, C.H. Boel, J. Alblas, H.C. Vogely, H. Weinans, A.A. Zadpoor, ACS Appl. Mater. Interfaces 8 (2016) 17080-17089. |
[113] | A. Roguska, A. Belcarz, J. Zalewska, M. Holdynski, M. Andrzejczuk, M. Pisarek, G. Ginalska, ACS Appl. Mater. Interfaces 10 (2018) 17089-17099. |
[114] | S. Yu, D. Guo, J. Han, L. Sun, H. Zhu, Z. Yu, M. Dargusch, G. Wang, ACS Appl. Mater. Interfaces 12 (2020) 44433-44446. |
[115] | S. Yao, X. Feng, J. Lu, Y. Zheng, X. Wang, A.A. Volinsky, L.N. Wang, Nanotech- nology 29 (2018) 244003. |
[116] | J. Wang, J. Li, S. Qian, G. Guo, Q. Wang, J. Tang, H. Shen, X. Liu, X. Zhang, P.K. Chu, ACS Appl. Mater. Interfaces 8 (2016) 11162-11178. |
[117] | F. Hizal, I. Zhuk, S. Sukhishvili, H.J. Busscher, H.C. van der Mei, C.H. Choi, ACS Appl. Mater. Interfaces 7 (2015) 20304-20313. |
[118] | W. Feng, N. Liu, L. Gao, Q. Zhou, L. Yu, X. Ye, J. Huo, X. Huang, P. Li, W. Huang, J. Mater. Sci. Technol. 69 (2021) 188-199. |
[119] | P.F. Tang, W. Zhang, Y. Wang, B.X. Zhang, H. Wang, C.J. Lin, L.H. Zhang, J. Nano- mater. 2011 (2011) 1-8. |
[120] | J.K. Oh, X. Lu, Y. Min, L. Cisneros-Zevallos, M. Akbulut, ACS Appl. Mater. Inter- faces 7 (2015) 19274-19281. |
[121] | M. Munther, T. Palma, I.A. Angeron, S. Salari, H. Ghassemi, M. Vasefi, A. Be- heshti, K.Davami, Appl. Surf. Sci. 453 (2018) 166-172. |
[122] | H. Alalwan, C.J. Nile, R. Rajendran, R. McKerlie, P. Reynolds, N. Gadegaard, G. Ramage, Nanomedicine 14 (2018) 1045-1049. |
[123] | V. Parmar, A. Kumar, M. Mani Sankar, S. Datta, G. Vijaya Prakash, S. Mohanty, D. Kalyanasundaram, J. Laser Appl. 30 (2018) 032001. |
[124] | Y. Ma, L. Jiang, J. Hu, H. Liu, S. Wang, P. Zuo, P. Ji, L. Qu, T. Cui, ACS Appl. Mater. Interfaces 12 (2020) 17155-17166. |
[125] | V. Vadillo-Rodriguez, A.I. Guerra-Garcia-Mora, D. Perera-Costa, M.L. Gonzalez-Martin, M.C. Fernandez-Calderon, Colloids Surf., B 169 (2018) 340-347. |
[126] | K.A. Whitehead, J. Colligon, J. Verran, Colloids Surf., B 41 (2005) 129-138. |
[127] | K.A. Whitehead, D. Rogers, J. Colligon, C. Wright, J. Verran,, Colloids Surf., B 51 (2006) 44-53. |
[128] | K. Manabe, S. Nishizawa, S. Shiratori, ACS Appl. Mater. Interfaces 5 (2013) 11900-11905. |
[129] | D. Fu, D. Pei, C. Huang, Y. Liu, X. Du, H. Sun, J. Dent. 41 (2013) 619-627. |
[130] | J. Li, T. Kleintschek, A. Rieder, Y. Cheng, T. Baumbach, U. Obst, T. Schwartz, P.A. Levkin, ACS Appl. Mater. Interfaces 5 (2013) 6704-6711. |
[131] | C. Liang, Y. Hu, H. Wang, D. Xia, Q. Li, J. Zhang, J. Yang, B. Li, H. Li, D. Han, M. Dong, Biomaterials 103 (2016) 170-182. |
[132] | M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, ACS Nano 3 (2009) 4062-4070. |
[133] | M.H. Dar, R. Kuladeep, V. Saikiran, D N.R., Appl.Surf. Sci. 371 (2016) 479-487. |
[134] | F.H. Rajab, Z. Liu, T. Wang, L. Li, Opt. Laser Technol. 111 (2019) 530-536. |
[135] | G. Tullii, S. Donini, C. Bossio, F. Lodola, M. Pasini, E. Parisini, F. Galeotti, M.R. Antognazza, ACS Appl. Mater. Interfaces 12 (2020) 5437-5446. |
[136] | R. Fontelo, D. Soares da Costa, R.L. Reis, R. Novoa-Carballal, I. Pashkuleva, Acta Biomater 112 (2020) 174-181. |
[137] | A.Z. Komaromy, S. Li, H. Zhang, D.V. Nicolau, R.I. Boysen, M.T.W. Hearn, Mi- croelectron.Eng. 91 (2012) 39-43. |
[138] | N. Lu, W. Zhang, Y. Weng, X. Chen, Y. Cheng, P. Zhou, Food Control 68 (2016) 344-351. |
[139] | A.M. Gallardo-Moreno, M. Multigner, A. Calzado-Martin, A. Mendez-Vilas, L. Saldana, J.C. Galvan, M.A. Pacha-Olivenza, J. Perera-Nunez, J.L. Gonzalez-Carrasco, I. Braceras, N. Vilaboa, M.L. Gonzalez-Martin Mater. Sci. Eng., C 31 (2011) 1567-1576. |
[140] | R.D. Boyd, J. Verran, M.V. Jones, M. Bhakoo, Langmuir 18 (2002) 2343-2346. |
[141] | Y. Cao, S. Jana, L. Bowen, X. Tan, H. Liu, N. Rostami, J. Brown, N.S. Jakubovics, J. Chen, Langmuir 35 (2019) 14670-14680. |
[142] | C. Diaz, R.C. Salvarezza, M.A. Fernandez Lorenzo de Mele, P.L. Schilardi, ACS Appl. Mater. Interfaces 2 (2010) 2530-2539. |
[143] | C. Meel, N. Kouzel, E.R. Oldewurtel, B. Maier, Small 8 (2012) 530-534. |
[144] | B. Maier, G.C.L. Wong, Trends Microbiol 23 (2015) 775-788. |
[145] | F. Hizal, C.-H. Choi, H.J. Busscher, H.C. van der Mei, ACS Appl. Mater. Inter- faces 8 (2016) 30430-30439. |
[146] | J. Ma, Y. Sun, K. Gleichauf, J. Lou, Q. Li, Langmuir 27 (2011) 10035-10040. |
[147] | R. Rosenzweig, K. Perinbam, V.K. Ly, S. Ahrar, A. Siryaporn, A.F. Yee, ACS Appl. Mater. Interfaces 11 (2019) 10532-10539. |
[148] | J. Xu, R. Danehy, H. Cai, Z. Ao, M. Pu, A. Nusawardhana, D. Rowe-Magnus, F. Guo, ACS Appl. Mater. Interfaces 11 (2019) 14640-14646. |
[149] | A. Bhattacharjee, M. Khan, M. Kleiman, A.I. Hochbaum, ACS Appl. Mater. In- terfaces 9 (2017) 18531-18539. |
[150] | L.C. Xu, Y. Wo, M.E. Meyerhoff, C.A. Siedlecki, Acta Biomater 51 (2017) 53-65. |
[151] | A. Susarrey-Arce, A. Marin, A. Massey, A. Oknianska, Y. Diaz-Fernandez, J.F. Hernandez-Sanchez, E. Griffiths, J.G. Gardeniers, J.H. Snoeijer, D. Lohse, R. Raval, Langmuir 32 (2016) 7159-7169. |
[152] | Y.R. Chang, E.R. Weeks, W.A. Ducker, ACS Appl. Mater. Interfaces 10 (2018) 9225-9234. |
[153] | V.K. Truong, H.K. Webb, E. Fadeeva, B.N. Chichkov, A.H. Wu, R. Lamb, J.Y. Wang, R.J. Crawford, E.P. Ivanova, Biofouling 28 (2012) 539-550. |
[154] | K. Doll, I. Yang, E. Fadeeva, N. Kommerein, S.P. Szafranski, G. Bei der Wieden, A. Greuling, A. Winkel, B.N. Chichkov, N.S. Stumpp, M. Stiesch, ACS Appl. Mater. Interfaces 11 (2019) 23026-23038. |
[155] | N. Mitik-Dineva, J. Wang, R.C. Mocanasu, P.R. Stoddart, R.J. Crawford, E.P. Ivanova, Biotechnol. J. 3 (2008) 536-544. |
[156] | N. Mitik-Dineva, J. Wang, V.K. Truong, P. Stoddart, F. Malherbe, R.J. Crawford, E.P. Ivanova, Curr. Microbiol. 58 (2009) 268-273. |
[157] | C. Lüdecke, J. Bossert, M. Roth, K.D. Jandt, Appl. Surf. Sci. 280 (2013) 578-589. |
[158] | V.K. Truong, V.T. Pham, A. Medvedev, R. Lapovok, Y. Estrin, T.C. Lowe, V. Baulin, V. Boshkovikj, C.J. Fluke, R.J. Crawford, E.P. Ivanova, Appl. Microbiol. Biotechnol. 99 (2015) 6831-6840. |
[159] | Y.Y. Zhao, B. Zhao, X. Su, S. Zhang, S. Wang, R. Keatch, Q. Zhao, Biofouling 34 (2018) 26-33. |
[160] | I. Yoda, H. Koseki, M. Tomita, T. Shida, H. Horiuchi, H. Sakoda, M. Osaki, BMC Microbiol 14 (2014) 234. |
[161] | K. Azelmad, F. Hamadi, R. Mimouni, K. Amzil, H. Latrache, M. Mabrouki, A. El Boulani, Food Control 73 (2017) 156-163. |
[162] | A. Lu, Y. Gao, T. Jin, X. Luo, Q. Zeng, Z. Shang, Ceram. Int. 46 (2020) 6550-6559. |
[163] | O. Seddiki, C. Harnagea, L. Levesque, D. Mantovani, F. Rosei, Appl. Surf. Sci. 308 (2014) 275-284. |
[164] | M. Lorenzetti, I. Dogsa, T. Stosicki, D. Stopar, M. Kalin, S. Kobe, S. Novak, ACS Appl. Mater. Interfaces 7 (2015) 1644-1651. |
[165] | S. Santhosh Kumar, S.S. Hiremath, B. Ramachandran, V. Muthuvijayan, Biotri- bology 18 (2019) 100095. |
[166] | T. Wassmann, S. Kreis, M. Behr, R. Buergers, Int. J. Implant Dent. 3 (2017) 32. |
[167] | S. Bagherifard, D.J. Hickey, A.C. de Luca, V.N. Malheiro, A.E. Markaki, M. Guagliano, T.J. Webster, Biomaterials 73 (2015) 185-197. |
[168] | M. Annunziata, A. Rizzo, C. Leone, C. Mangano, N. Mazzola, L. Nastri, F. Papale, F. Rullo, L. Guida, Surf. Coat. Technol. 328 (2017) 390-397. |
[169] | I. Braceras, M.A. Pacha-Olivenza, A. Calzado-Martín, M. Multigner, C. Vera, L.L. Broncano, A.M. Gallardo-Moreno, J.L. González-Carrasco, N. Vilaboa, M.L. González-Martín, Appl. Surf. Sci. 310 (2014) 36-41. |
[170] | G.S. Kaliaraj, M. Bavanilathamuthiah, K. Kirubaharan, D. Ramachandran, T. Dharini, K. Viswanathan, V. Vishwakarma, Surf. Coat. Technol. 307 (2016) 227-235. |
[171] | K. Bohinc, G. Dražić, A. Abram, M. Jevšnik, B. Jeršek, D. Nipič, M. Kurinčič, P. Raspor, Int. J. Adhes. Adhes. 68 (2016) 39-46. |
[172] | A. Almaguer-Flores, L.A. Ximenez-Fyvie, S.E. Rodil, J. Biomed. Mater. Res., Part B 92 (2010) 196-204. |
[173] | S.Y. Choi, O. Habimana, P. Flood, E.G. Reynaud, B.J. Rodriguez, N. Zhang, E. Casey, M.D. Gilchrist, Colloids Surf., B 145 (2016) 46-54. |
[174] | S. Shaikh, D. Singh, M. Subramanian, S. Kedia, A.K. Singh, K. Singh, N. Gupta, S. Sinha, J. Non-Cryst. Solids 482 (2018) 63-72. |
[175] | C. Spengler, F. Nolle, J. Mischo, T. Faidt, S. Grandthyll, N. Thewes, M. Koch, F. Muller, M. Bischoff, M.A. Klatt, K. Jacobs, Nanoscale 11 (2019) 19713-19722. |
[176] | A. Merghni, D. Kammoun, H. Hentati, S. Janel, M. Popoff, F. Lafont, M. Aouni, M. Mastouri, Appl. Surf. Sci. 379 (2016) 323-330. |
[177] | E. Preedy, S. Perni, D. Nipic, K. Bohinc, P. Prokopovich, Langmuir 30 (2014) 9466-9476. |
[178] | Y. Chao, T. Zhang, Langmuir 27 (2011) 11545-11553. |
[179] | L. Mei, H.J. Busscher, H.C. van der Mei, Y. Ren, Dent. Mater. 27 (2011) 770-778. |
[180] | C. Wang, Y. Zhao, S. Zheng, J. Xue, J. Zhou, Y. Tang, L. Jiang, W. Li, Scanning 37 (2015) 313-321. |
[181] | M.P. Ortega, T. Hagiwara, H. Watanabe, T. Sakiyama, Food Control 21 (2010) 573-578. |
[182] | T.S. Awad, D. Asker, B.D. Hatton, ACS Appl. Mater. Interfaces 10 (2018) 22902-22912. |
[183] | Y. Wu, J.P. Zitelli, K.S. TenHuisen, X. Yu, M.R. Libera, Biomaterials 32 (2011) 951-960. |
[184] | A. Choukourov, O. Kylian, M. Petr, M. Vaidulych, D. Nikitin, J. Hanus, A. Arte-menko, A. Shelemin, I. Gordeev, Z. Kolska, P. Solar, I. Khalakhan, A. Ryabov, J. Majek, D. Slavinska, H. Biederman, Nanoscale 9 (2017) 2616-2625. |
[185] | Z. Li, Z. Guo, Nanoscale 11 (2019) 22636-22663. |
[186] | S. Wang, K. Liu, X. Yao, L. Jiang, Chem. Rev. 115 (2015) 8230-8293. |
[187] | B. Su, Y. Tian, L. Jiang, J. Am. Chem. Soc. 138 (2016) 1727-1748. |
[188] | C.-W. Chan, L. Carson, G.C. Smith, A. Morelli, S. Lee, Appl. Surf. Sci. 404 (2017) 67-81. |
[189] | C. Lubov Donaghy, R. McFadden, S. Kelaini, L. Carson, A. Margariti, C.-W. Chan, Opt.Laser Technol. 121 (2020) 105793. |
[190] | B. Li, B.E. Logan, Colloids Surf., B 36 (2004) 81-90. |
[191] | C. De Giorgi, V. Furlan, A.G. Demir, E. Tallarita, G. Candiani, B. Previtali, Appl. Surf. Sci. 406 (2017) 199-211. |
[192] | S. Zouaghi, T. Six, S. Bellayer, Y. Coffinier, M. Abdallah, N.-E. Chihib, C. André, G. Delaplace, M. Jimenez, Appl. Surf. Sci. 455 (2018) 392-402. |
[193] | G. Chen, Z. Wang, H. Wang, X. Zhao, J. Hu, S. Wang, S. Zhang, Surf. Coat. Technol. 206 (2012) 3386-3392. |
[194] | A. Sarker, N. Tran, A. Rifai, M. Brandt, P.A. Tran, M. Leary, K. Fox, R. Williams, Materialia 5 (2019) 100250. |
[195] | G. Zhao, W.-N. Chen, React.Funct. Polym. 97 (2015) 19-29. |
[196] | I. De-la-Pinta, M. Cobos, J. Ibarretxe, E. Montoya, E. Eraso, T. Guraya, G. Quin- dos, J. Mater. Sci. Mater. Med. 30 (2019) 77. |
[197] | P.B. Vermeltfoort, H.C. van der Mei, H.J. Busscher, J.M. Hooymans, G.M. Bru-insma, J. Biomed. Mater. Res., Part B 71 (2004) 336-342. |
[198] | K. Schwibbert, F. Menzel, N. Epperlein, J. Bonse, J. Kruger, Materials 12 (2019) 3107. |
[199] | S.H. Yoon, N. Rungraeng, W. Song, S. Jun, J. Food Eng. 131 (2014) 135-141. |
[200] | Y. Jiang, Y.-J. Yin, X.-C. Zha, X.-Q. Dou, C.-L. Feng, Chin. Chem. Lett. 28 (2017) 813-817. |
[201] | T.P. Manoj, T.P. Rasitha, S.C. Vanithakumari, B. Anandkumar, R.P. George, J. Philip, Appl. Surf. Sci. 512 (2020) 145636. |
[202] | B.J. Privett, J. Youn, S.A. Hong, J. Lee, J. Han, J.H. Shin, M.H. Schoenfisch, Lang- muir 27 (2011) 9597-9601. |
[203] | C.R. Crick, S. Ismail, J. Pratten, I.P. Parkin, Thin Solid Films 519 (2011) 3722-3727. |
[204] | O. Bazaka, K. Bazaka, V.K. Truong, I. Levchenko, M.V. Jacob, Y. Estrin, R. Lapo-vok, B. Chichkov, E. Fadeeva, P. Kingshott, R.J. Crawford, E.P. Ivanova, Appl. Surf. Sci. 521 (2020) 146375. |
[205] | J.G.S. Souza, M. Bertolini, R.C. Costa, J.M. Cordeiro, B.E. Nagay, A.B. de Almeida, B. Retamal-Valdes, F.H. Nociti, M. Feres, E.C. Rangel, V.A.R. Barao, ACS Appl. Mater. Interfaces 12 (2020) 10118-10129. |
[206] | A. Almaguer-Flores, P. Silva-Bermudez, R. Galicia, S.E. Rodil, Mater. Sci. Eng., C 57 (2015) 88-99. |
[207] | M. Qi, X. Gong, B. Wu, G. Zhang, Langmuir 33 (2017) 3525-3533. |
[208] | H. Xu, A.E. Murdaugh, W. Chen, K.E. Aidala, M.A. Ferguson, E.M. Spain, M.E. Nunez, Langmuir 29 (2013) 3000-3011. |
[209] | G. Zeng, T. Muller, R.L. Meyer, Langmuir 30 (2014) 4019-4025. |
[210] | R.M. Sullan, A. Beaussart, P. Tripathi, S. Derclaye, S. El-Kirat-Chatel, J.K. Li, Y.J. Schneider, J. Vanderleyden, S. Lebeer, Y.F. Dufrene, Nanoscale 6 (2014) 1134-1143. |
[211] | A. Beaussart, A.E. Baker, S.L. Kuchma, S. El-Kirat-Chatel, G.A. O’Toole, Y.F. Dufrene, ACS Nano 8 (2014) 10723-10733. |
[212] | J. Luo, W.-B. Chan, L. Wang, C.-J. Zhong, Int. J. Antimicrob. Agents 36 (2010) 549-556. |
[213] | J. Gu, A. Valdevit, T.M. Chou, M. Libera, Soft Matter 13 (2017) 2967-2976. |
[214] | Y. Chen, A.K. Harapanahalli, H.J. Busscher, W. Norde, H.C. van der Mei, Appl.Environ. Microbiol. 80 (2014) 637-643. |
[215] | Y.L. Ong, A. Razatos, G. Georgiou, M.M. Sharma, Langmuir 15 (1999) 2719-2725. |
[216] | H. Tang, T. Cao, X. Liang, A. Wang, S.O. Salley, J. McAllister 2nd, K.Y. Ng, J. Biomed. Mater. Res., Part A 88 (2009) 454-463. |
[217] | S. Abban, M. Jakobsen, L. Jespersen, Food Microbiol 31 (2012) 139-147. |
[218] | N.P. Boks, H.J. Busscher, H.C. van der Mei, W. Norde, Langmuir 24 (2008) 12990-12994. |
[219] | A.T. Kriegel, W.A. Ducker, Langmuir 35 (2019) 12817-12830. |
[220] | J. Zhang, J. Huang, C. Say, R.L. Dorit, K.T. Queeney, J. Colloid Interface Sci. 519 (2018) 203-213. |
[221] | T. Cao, H. Tang, X. Liang, A. Wang, G.W. Auner, S.O. Salley, K.Y. Ng, Biotechnol. Bioeng. 94 (2006) 167-176. |
[222] | T. Wang, L. Huang, Y. Liu, X. Li, C. Liu, S. Handschuh-Wang, Y. Xu, Y. Zhao, Y. Tang, ACS Appl. Mater. Interfaces 12 (2020) 24432-24441. |
[223] | Q. Pan, Y. Cao, W. Xue, D. Zhu, W. Liu, Langmuir 35 (2019) 11414-11421. |
[224] | M. Mateescu, S. Knopf, F. Mermet, P. Lavalle, L. Vonna, Langmuir 36 (2020) 1103-1112. |
[225] | J. Lin, X. Cai, Z. Liu, N. Liu, M. Xie, B. Zhou, H. Wang, Z. Guo, Adv. Funct. Mater. 30 (2020) 20 0 0398. |
[226] | X.Q. Dou, D. Zhang, C. Feng, L. Jiang, ACS Nano 9 (2015) 10664-10672. |
[227] | J.A. Lichter, M.T. Thompson, M. Delgadillo, T. Nishikawa, M.F. Rubner, K.J. Van Vliet, Biomacromolecules 9 (2008) 1571-1578. |
[228] | Z. Lu, E.A.Q. Mondarte, K. Suthiwanich, T. Hayashi, T. Masuda, N. Isu, M. Takai, ACS Appl. Bio Mater. 3 (2020) 1079-1087. |
[229] | K.W. Kolewe, J. Zhu, N.R. Mako, S.S. Nonnenmann, J.D. Schiffman, ACS Appl. Mater. Interfaces 10 (2018) 2275-2281. |
[230] | Q. Peng, X. Zhou, Z. Wang, Q. Xie, C. Ma, G. Zhang, X. Gong, Langmuir 35 (2019) 12257-12263. |
[231] | F. Song, M.E. Brasch, H. Wang, J.H. Henderson, K. Sauer, D. Ren, ACS Appl. Mater. Interfaces 9 (2017) 22176-22184. |
[232] | L. Cai, D. Wu, J. Xia, H. Shi, H. Kim, Sci. Total Environ. 671 (2019) 1101-1107. |
[233] | F. Song, D. Ren, Langmuir 30 (2014) 10354-10362. |
[234] | N. Saha, C. Monge, V. Dulong, C. Picart, K. Glinel, Biomacromolecules 14 (2013) 520-528. |
[235] | S.L. Arias, J. Devorkin, A. Civantos, J.P. Allain, Langmuir 37 (2021) 16-25. |
[236] | D. Kovacevic, R. Pratnekar, K. Godic Torkar, J. Salopek, G. Drazic, A. Abram, K. Bohinc, Polymers (Basel) 8 (2016) 345. |
[237] | L. Spasojevic, S. Bucko, D. Kovacevic, K. Bohinc, J. Jukic, A. Abram, J. Pozar, J. Katona, Colloids Surf., B 196 (2020) 111289. |
[238] | G. Decher, Science 277 (1997) 1232-1237. |
[239] | X. Zhu, D. Janczewski, S. Guo, S.S. Lee, F.J. Parra Velandia, S.L. Teo, T. He, S.R. Puniredd, G.J. Vancso, ACS Appl. Mater. Interfaces 7 (2015) 852-861. |
[240] | R.J. Smith, M.G. Moule, P. Sule, T. Smith, J.D. Cirillo, J.C. Grunlan, ACS Bio- mater. Sci. Eng. 3 (2017) 1845-1852. |
[241] | X. Zhu, S. Guo, T. He, S. Jiang, D. Janczewski, G.J. Vancso, Langmuir 32 (2016) 1338-1346. |
[242] | B. Asadishad, S. Ghoshal, N. Tufenkji, Environ. Sci. Technol. 45 (2011) 8345-8351. |
[243] | J. Hoque, S. Ghosh, K. Paramanandham, J. Haldar, ACS Appl. Mater. Interfaces 11 (2019) 39150-39162. |
[244] | L. Liu, W. Peng, X. Zhang, J. Peng, P. Liu, J. Shen, J. Mater. Sci. Technol. 62 (2021) 96-106. |
[245] | E. Zamani, T.J. Johnson, S. Chatterjee, C. Immethun, A. Sarella, R. Saha, S.K. Dishari, ACS Appl. Mater. Interfaces 12 (2020) 49346-49361. |
[246] | Y. Wang, T.S. Corbitt, S.D. Jett, Y. Tang, K.S. Schanze, E.Y. Chi, D.G. Whitten, Langmuir 28 (2012) 65-70. |
[247] | C. Chen, T. Petterson, J. Illergard, M. Ek, L. Wagberg, Biomacromolecules 20 (2019) 2075-2083. |
[248] | Y. Wang, S.D. Jett, J. Crum, K.S. Schanze, E.Y. Chi, D.G. Whitten, Langmuir 29 (2013) 781-792. |
[249] | H.C. Pappas, S. Phan, S. Yoon, L.E. Edens, X. Meng, K.S. Schanze, D.G. Whitten, D.J. Keller, ACS Appl. Mater. Interfaces 7 (2015) 27632-27638. |
[250] | Y. Zou, Y. Zhang, Q. Yu, H. Chen, J. Mater. Sci. Technol. 70 (2021) 24-38. |
[251] | C.J. Huang, Y.S. Chen, Y. Chang, ACS Appl. Mater. Interfaces 7 (2015) 2415-2423. |
[252] | L. Wang, X. Zhang, K. Yang, Y.V. Fu, T. Xu, S. Li, D. Zhang, L.N. Wang, C.S. Lee, Adv. Funct. Mater. 30 (2019) 1904156. |
[253] | K. Bohinc, J. Bajuk, J. Jukić, A. Abram, M. Oder, K.G. Torkar, P. Raspor, D. Kovačević, Int.J. Adhes. Adhes. 103 (2020) 102687. |
[254] | S.M. Imani, R. Maclachlan, K. Rachwalski, Y. Chan, B. Lee, M. McInnes, K. Grandfield, E.D. Brown, T.F. Didar, L. Soleymani, ACS Nano 14 (2020) 454-465. |
[255] | K. Drescher, J. Dunkel, L.H. Cisneros, S. Ganguly, R.E. Goldstein, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 10940-10945. |
[256] | E. Secchi, A. Vitale, G.L. Miño, V. Kantsler, L. Eberl, R. Rusconi, R. Stocker, Nat. Commun. 11 (2020) 2851. |
[257] | R. Fink, M. Oder, D. Rangus, P. Raspor, K. Bohinc, Int. J. Environ. Health Res. 25 (2015) 656-669. |
[258] | M. Oder, M. Arlic, K. Bohinc, R. Fink, Int. J. Environ. Health Res. 28 (2018) 55-63. |
[259] | X. Zhang, C. Yang, T. Xi, J. Zhao, K. Yang, ACS Appl. Mater. Interfaces 13 (2021) 2303-2315. |
[260] | P.A. Ruhs, K.G. Malollari, M.R. Binelli, R. Crockett, D.W.R. Balkenende, A.R. Stu-dart, P.B. Messersmith, ACSNano 14 (2020) 3885-3895. |
[261] | I. Drame, C. Formosa-Dague, C. Lafforgue, M.P. Chapot-Chartier, J.C. Piard, M. Castelain, E. Dague, ACS Appl. Mater. Interfaces 12 (2020) 21411-21423. |
[262] | C. Feuillie, C. Valotteau, L. Makart, A. Gillis, J. Mahillon, Y.F. Dufrene, Nano Lett 18 (2018) 5821-5826. |
[263] | L. Tala, A. Fineberg, P. Kukura, A. Persat, Nat. Microbiol. 4 (2019) 774-780. |
[264] | M. Motay, D. Martel, B. Vileno, C. Soraru, L. Ploux, M.G. Mendez-Medrano, C. Colbeau-Justin, G. Decher, N. Keller, ACS Appl. Mater. Interfaces 12 (2020) 55766-55781. |
[265] | D. Wilms, F. Schroer, T.J. Paul, S. Schmidt, Langmuir 36 (2020) 12555-12562. |
[266] | M. Ghasemlou, F. Daver, E.P. Ivanova, J.W. Rhim, B. Adhikari, ACS Appl. Mater. Interfaces 11 (2019) 22897-22914. |
[267] | M. Fu, Y. Liang, X. Lv, C. Li, Y.Y. Yang, P. Yuan, X. Ding, J. Mater. Sci. Technol. 85 (2021) 169-183. |
[1] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[2] | S. Pugal Mani, P. Agilan, M. Kalaiarasan, K. Ravichandran, N. Rajendran, Y. Meng. Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell [J]. J. Mater. Sci. Technol., 2022, 97(0): 134-146. |
[3] | Lili Cao, Bingwei Luo, Hongli Gao, Min Miao, Tao Wang, Yuan Deng. Structure induced wide range wettability: Controlled surface of micro-nano/nano structured copper films for enhanced interface [J]. J. Mater. Sci. Technol., 2021, 84(0): 147-158. |
[4] | Subash Bommu Chinnaraj, Pahala Gedara Jayathilake, Jack Dawson, Yasmine Ammar, Jose Portoles, Nicholas Jakubovics, Jinju Chen. Modelling the combined effect of surface roughness and topography on bacterial attachment [J]. J. Mater. Sci. Technol., 2021, 81(0): 151-161. |
[5] | Davide Porrelli, Mario Mardirossian, Nicola Crapisi, Marco Urban, Nicola Andrea Ulian, Lorenzo Bevilacqua, Gianluca Turco, Michele Maglione. Polyetheretherketone and titanium surface treatments to modify roughness and wettability - Improvement of bioactivity and antibacterial properties [J]. J. Mater. Sci. Technol., 2021, 95(0): 213-224. |
[6] | Zhihua Yu, Huimei Zhang, Jianying Huang, Shuhui Li, Songnan Zhang, Yan Cheng, Jiajun Mao, Xiuli Dong, Shouwei Gao, Shanchi Wang, Zhong Chen, Yaoxing Jiang, Yuekun Lai. Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting [J]. J. Mater. Sci. Technol., 2021, 61(0): 85-92. |
[7] | Wenlong Qi, Jidong Wang, Xuanpeng Li, Yanan Cui, Yang Zhao, Junfeng Xie, Guanxin Zeng, Qiuying Gao, Tao Zhang, Fuhui Wang. Effect of oxide scale on corrosion behavior of HP-13Cr stainless steel during well completion process [J]. J. Mater. Sci. Technol., 2021, 64(0): 153-164. |
[8] | Yaoxiang Duan, Han Chen, Zhe Chen, Lei Wang, Mingliang Wang, Jun Liu, Fengguo Zhang, Haowei Wang. The influence of nanosized precipitates on Portevin-Le Chatelier bands and surface roughness in AlMgScZr alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 74-82. |
[9] | Yifei Wang, Jing Zhang, Kangmei Li, Jun Hu. Surface characterization and biocompatibility of isotropic microstructure prepared by UV laser [J]. J. Mater. Sci. Technol., 2021, 94(0): 136-146. |
[10] | Jinpeng Li, Huarui Zhang, Ming Gao, Qingling Li, Weidong Bian, Yongshuang Cui, Tongxiang Tao, Hu Zhang. Mechanisms of yttrium on the wettability, surface tension and interactions between Ni-20Co-20Cr-10Al-ξY alloys and MgO ceramics [J]. J. Mater. Sci. Technol., 2021, 70(0): 39-48. |
[11] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[12] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[13] | Adnan Tahir, Guang-Rong Li, Mei-Jun Liu, Guan-Jun Yang, Cheng-Xin Li, Yu-Yue Wang, Chang-Jiu Li. Improving WC-Co coating adhesive strength on rough substrate: Finite element modeling and experiment [J]. J. Mater. Sci. Technol., 2020, 37(0): 1-8. |
[14] | Mingshi Yu, Guancheng Wang, Rongrong Zhao, Enze Liu, Tonglai Chen. Improved interfacial wetability in Cu/ZnO and its role in ZnO/Cu/ZnO sandwiched transparent electrodes [J]. J. Mater. Sci. Technol., 2020, 37(0): 123-127. |
[15] | Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2020, 40(0): 15-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||