J. Mater. Sci. Technol. ›› 2021, Vol. 95: 114-126.DOI: 10.1016/j.jmst.2021.03.068
• Research Article • Previous Articles Next Articles
Barton Mensah Arkhursta, Jee Hwan Baeb, Min Young Nab, Hye Jung Changb, Hyun Gil Kimc, Il Hyun Kimc, Ho Jin Ryud, Jeoung Han Kime,*(
)
Received:2021-01-02
Revised:2021-03-18
Accepted:2021-03-22
Published:2021-12-30
Online:2021-05-24
Contact:
Jeoung Han Kim
About author:* E-mail address: jh.kim@hanbat.ac.kr (J.H. Kim).Barton Mensah Arkhurst, Jee Hwan Bae, Min Young Na, Hye Jung Chang, Hyun Gil Kim, Il Hyun Kim, Ho Jin Ryu, Jeoung Han Kim. Effect of tellurium on the microstructure and mechanical properties of Fe-14Cr oxide-dispersion-strengthened steels produced by additive manufacturing[J]. J. Mater. Sci. Technol., 2021, 95: 114-126.
Fig. 2. (a) Schematic representation of DED process and scanning path used in the present work. (b) Macro photograph of typical ODS steel sample produced by the DED process.
Fig. 3. EBSD image quality, inverse pole figure, and KAM figures of the (a) AM-A and (b) AM-B deposition layers in the build-up direction and (c) the corresponding grain size distributions. (d) HAADF-STEM images of AM-A and AM-B deposition layers showing their coarse and relatively refined grains, respectively.
Fig. 5. (a) HAADF-STEM image and the corresponding EDS element maps of the AM-A deposition layer showing coarse core-shell NPs. (b) HAADF-STEM image and element maps of typical NPs in AM-A. (c) HR TEM image obtained from the pink box area in Fig. 5(b) (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
Fig. 6. (a) STEM-HAADF image and corresponding EDS element maps of the AM-B deposition layer, showing the fine dispersion of NPs. (b), (c) HAADF-STEM image and element maps of typical NPs in AM-B. (d) BF image of particle in Fig. 6(c) and diffraction pattern obtained from entire BF image area.
Fig. 8. Engineering tensile stress-displacement curves of AM-A and AM-B deposition layers obtained at 22°C. Tensile loading axis is taken along z-axis.
Fig. 9. Nanoindentation results for (a) AM-A and (b) AM-B samples. The parenthesized numbers in blue and black show the hardness values of coarse- and fine-grain regions, respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
| AM-A | AM-B | |||
|---|---|---|---|---|
| Position | Fine-grained region | Coarse-grained region | Fine-grained region | Coarse-grained region |
| (1) | 231.0 | 200.7 | 308.6 | 247.3 |
| (2) | 225.9 | 198.4 | 329.6 | 264.0 |
| (3) | 208.7 | 178.9 | 283.6 | 238.0 |
| (4) | 217.9 | 192.4 | 289.1 | 224.5 |
| (5) | 240.8 | 166.8 | 304.0 | 258.0 |
| (6) | 207.8 | 176.1 | 307.3 | - |
| (7) | 238.0 | - | 288.7 | - |
| (8) | 208.7 | - | 290.5 | - |
| (9) | 209.1 | - | 302.1 | - |
| (10) | - | - | 317.0 | - |
| Mean | 220.9 | 185.5 | 302.1 | 246.4 |
Table 1 HV hardness values for fine- and coarse-grained regions of the AM-A and AM-B deposition layers.
| AM-A | AM-B | |||
|---|---|---|---|---|
| Position | Fine-grained region | Coarse-grained region | Fine-grained region | Coarse-grained region |
| (1) | 231.0 | 200.7 | 308.6 | 247.3 |
| (2) | 225.9 | 198.4 | 329.6 | 264.0 |
| (3) | 208.7 | 178.9 | 283.6 | 238.0 |
| (4) | 217.9 | 192.4 | 289.1 | 224.5 |
| (5) | 240.8 | 166.8 | 304.0 | 258.0 |
| (6) | 207.8 | 176.1 | 307.3 | - |
| (7) | 238.0 | - | 288.7 | - |
| (8) | 208.7 | - | 290.5 | - |
| (9) | 209.1 | - | 302.1 | - |
| (10) | - | - | 317.0 | - |
| Mean | 220.9 | 185.5 | 302.1 | 246.4 |
| [1] |
X. Boulnat, M. Perez, D. Fabrègue, S. Cazottes, Y. de Carlan, Acta Mater. 107 (2016) 390-403.
DOI URL |
| [2] |
J.B. Seol, D. Haley, D.T. Hoelzer, J.H. Kim, Acta Mater. 153 (2018) 71-85.
DOI URL |
| [3] |
T.S. Byun, J.H. Yoon, D.T. Hoelzer, Y.B. Lee, S.H. Kang, S.A. Maloy, Nucl. Mater. 449 (2014) 290-299.
DOI URL |
| [4] |
J.H. Kim, T.S. Byun, E. Shin, J.B. Seol, S. Young, N.S. Reddy, J. Alloy. Compd. 651 (2015) 363-374.
DOI URL |
| [5] |
A.J. London, S. Santra, S. Amirthapandian, B.K. Panigrahi, R.M. Sarguna, S. Balaji, R. Vijay, C.S. Sundar, S. Lozano-Perez, C.R.M. Grovenor, Acta Mater. 97 (2015) 223-233.
DOI URL |
| [6] |
K. Euh, B. Arkhurst, I.H. Kim, H. Kim, J.H. Kim, Met. Mater. Int. 23 (2017) 1063-1074.
DOI URL |
| [7] | T.S. Chou, H.K.D.H. Bhadeshia, G. McColvin, I.C. Elliott, in: Proceeding of the 2nd Int. Conf. on Structural Applications of Mechanical Alloying, ASM, Vancou-ver, 1993, pp. 77-82. |
| [8] |
C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, E.A. Marquis, Acta Mater. 61 (2013) 2219-2235.
DOI URL |
| [9] |
C. Capdevila, H.K.D.H. Bhadeshia, Adv. Eng. Mater. 3 (2001) 647-656.
DOI URL |
| [10] |
J. Chao, C. Capdevila, M. Serrano, A.G. Junceda, J.A. Jimenez, M.K. Miller, Mater. Des. 53 (2014) 1037-1046.
DOI URL |
| [11] |
R.M. Hunt, K.J. Kramer, B. El-Dasher, J. Nucl. Mater. 464 (2015) 80-85.
DOI URL |
| [12] |
J.S. Park, M.G. Lee, Y.J. Cho, J.H. Sung, M.S. Jeong, S.K. Lee, Y.J. Choi, D.H. Kim, Met. Mater. Int. 22 (2016) 143-147.
DOI URL |
| [13] | S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, Addit. Manuf. 8 (2015) 36-62. |
| [14] |
T. Boegelein, E. Louvis, K. Dawson, G.J. Tatlock, A.R. Jones, Mater. Charact. 112 (2016) 30-40.
DOI URL |
| [15] |
R. Gao, L. Zeng, H. Ding, T. Zhang, X. Wang, Q. Fang, Mater. Des. 89 (2016) 1171-1180.
DOI URL |
| [16] |
Y. Zhong, L. Liu, J. Zou, X. Li, D. Cui, Z. Shen, J. Mater. Sci. Technol. 42 (2020) 97-105.
DOI |
| [17] |
C. Doñate-Buendia, R. Streubel, P. Kürnsteiner, M.B. Wilms, F. Stern, J. Tenkamp, E. Bruder, S. Barcikowski, B. Gault, K. Durst, J.H. Schleifenbaum, F. Walther, B. Gökce, Proc. CIRP 94 (2020) 41-45.
DOI URL |
| [18] | C. Doñate-Buendia, P. Kürnsteiner, F. Stern, M.B. Wilms, R. Streubel, I.M. Ku-soglu, J. Tenkamp, E. Bruder, N. Pirch, S. Barcikowski, K. Durst, J.H. Schleifen-baum, F. Walther, B. Gault, B. Gökce, Acta Mater. 206 (2021) 41-45. |
| [19] | B.M. Arkhurst, J. Park, C. Lee, J.H. Kim, Korean. J. Met. Mater. 55 (2017) 550-558. |
| [20] | R. Vilar, Laser Cladding J. Laser Appl. 11 (2001) 64-79. |
| [21] |
S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, J. Mater. Process. Technol. 178 (2006) 135-142.
DOI URL |
| [22] |
B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, E.J. Lavernia, Metall. Mater. Trans. A 39 (2008) 2228-2236.
DOI URL |
| [23] |
N. Liu, Z. Li, G. Xu, Z. Feng, S. Gong, L. Zhu, S. Liang, Mater. Sci. Eng A 528 (2011) 7956-7961.
DOI URL |
| [24] |
H. Yaguchi, N. Onodera, Trans. ISIJ 28 (1988) 1051-1059.
DOI URL |
| [25] |
E. Costa, N. Luiz, M. da Silva, A. Machado, E. Ezugwu, Ind. Lubr. Tribol. 63 (2011) 420-426.
DOI URL |
| [26] | A. Mahmutoviü, M. Rimac, J. Trands Dev. Mach. Assoc. Technol. 19 (2015) 53-56. |
| [27] |
N.E. Luiz, A.R. Machado, Proc. Inst. Mech. Eng. B 222 (2008) 347-360.
DOI URL |
| [28] |
S. Lozano-Perez, B.V. De Castro, R. Nicholls, Ultramicroscopy 109 (2009) 1217-1228.
DOI PMID |
| [29] |
M. Klimenkov, R. Lindau, A. Möslang, Nucl. Mater. 386-388 (2009) 553-556.
DOI URL |
| [30] |
E.A. Marquis, Appl. Phys. Lett. 93 (2008) 181904.
DOI URL |
| [31] |
V. de Castro, E.A. Marquis, S. Lozano-Perez, R. Pareja, M.L. Jenkins, Acta Mater. 59 (2011) 3927-3936.
DOI URL |
| [32] |
M. Higgins, C. Lu, Z. Lu, L. Shao, Appl. Phys. Lett. 109 (2016) 031911.
DOI URL |
| [33] |
K. Ogino, K. Nogi, O. Yamase, Trans. Iron Steel Inst. Jpn. 23 (1983) 234-239.
DOI URL |
| [34] |
L.L. Hsiung, M.J. Fluss, A. Kimura, Mater. Lett. 64 (2010) 1782-1785.
DOI URL |
| [35] |
P. He, T. Liu, A. Moslang, R. Lindau, R. Ziegler, J. Hoffmann, P. Kurinskiy, L. Com-min, P. Vladimirov, S. Nikitenko, M. Silveir, Mater. Chem. Phys. 136 (2012) 990-998.
DOI URL |
| [36] | V. de Castro, S. Lozano-Perez, E.A. Marquis, M.A. Auger, T. Leguey, R. Pareja, J. Mater. Sci. Technol. 27 (2011) 729-734. |
| [37] |
Q. Zhao, L. Yu, Y. Liu, Y. Huang, Z. Ma, H. Li, J. Wu, Mater. Sci. Eng. A 680 (2017) 347-350.
DOI URL |
| [38] |
H. Hu, Z. Zhou, L. Liao, M. Wang, S. Li, J. Phys. Conf. Ser. 419 (2013) 012029.
DOI URL |
| [39] |
M. Serrano, M. Hernandez-Mayoral, A. Garcia-Junceda, J. Nucl. Mater. 428 (2012) 103-109.
DOI URL |
| [40] |
Z. Oksiuta, P. Olier, Y. de Carlan, N. Baluc, J. Nucl. Mater. 393 (2009) 114-119.
DOI URL |
| [41] |
J.H. Kim, T.S. Byun, D.T. Hoelzer, J. Nucl. Mater. 407 (2010) 143-150.
DOI URL |
| [42] |
N. Hansen, Scr. Mater. 51 (2004) 801-806.
DOI URL |
| [43] | https://www.bbshalmstad.se/en/infocenter/hardness-conversion-table/. |
| [44] |
K. Monma, H. Suto, Trans. JIM 2 (1961) 148.
DOI URL |
| [45] | K. Yadav, A. Mishra, Proceeding of the Numerical analysis of effect of surface active elements on Marangoni flow in melt pool. Excerpt from the proceedings of the 2016 COMSOL conf. in Banglore, 2016. |
| [46] |
T.N. Le, Y.N. Lo, Mater. Des. 179 (2019) 107866.
DOI URL |
| [47] | D. Morrall, J. Gao, Z. Zhang, K. Yabuuchi, A. Kimura, T. Ishizaki, Y. Maruno, Nucl. Mater. Energy 15 (2018) 92-96. |
| [48] |
Z. Zhou, S. Yang, W. Chen, L. Liao, Y. Xu, J. Nucl. Mater. 428 (2012) 31-34.
DOI URL |
| [49] |
Y. Xu, Z. Zhou, M. Li, P. He, J. Nucl. Mater. 417 (2011) 283-285.
DOI URL |
| [50] |
H. Oka, M. Watanabe, S. Ohnuki, N. Hashimoto, S. Yamashita, S. Ohtsuka, J. Nucl. Mater. 447 (1-3) (2014) 248-253.
DOI URL |
| [51] |
Y. Miao, K. Mo, B. Cui, W.Y. Chen, M.K. Miller, K.A. Powers, V. McCreary, D. Gross, J. Almer, I.M. Robertson, J.F. Stubbins, Mater. Charact. 101 (2015) 136-143.
DOI URL |
| [52] |
J.C. Walker, K.M. Berggreen, A.R. Jones, C.J. Sutcliffe, Adv. Eng. Mater. 11 (2009) 541-546.
DOI URL |
| [53] |
M. Ghayoor, K. Lee, Y. He, C. Chang, B.K. Paul, Mater. Sci. Eng. A 788 (2020) 139532.
DOI URL |
| [54] |
J.H. Kim, T.S. Byun, D.T. Hoelzer, C.H. Park, J.T. Yeom, J.K. Hong, Mater. Sci. Eng. A 559 (2013) 111-118.
DOI URL |
| [55] |
B. Mouawad, X. Boulnat, D. Fabregue, M. Perez, Y. de Carlan, J. Nucl. Mater. 465 (2015) 54-62.
DOI URL |
| [56] |
A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Bechade, I. Tournie, A. Tancray, A. Bougault, P. Bonnaillie, J. Nucl. Mater. 405 (2010) 95-100.
DOI URL |
| [57] | S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, S. Ohnuki, J. Nucl. Mater. 510-511 (2009) 115-120. |
| [58] | J.W. Martin, Micromechanisms in Particle-Hardened Alloys, Cambridge Univer-sity Press, New York, 1980. |
| [59] |
J.H. Schneibel, M. Heilmaier, W. Blum, G. Hasemann, T. Shanmugasundaram, Acta Mater. 59 (2011) 1300-1308.
DOI URL |
| [60] |
J.H. Kim, T.S. Byun, D.T. Hoelzer, J. Nucl. Mater. 425 (2012) 147-155.
DOI URL |
| [1] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
| [2] | Jie Liu, Li Li, Run Zhang, Zhi Ping Xu. Development of CaP nanocomposites as photothermal actuators for doxorubicin delivery to enhance breast cancer treatment [J]. J. Mater. Sci. Technol., 2021, 63(0): 73-80. |
| [3] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
| [4] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
| [5] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
| [6] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
| [7] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
| [8] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
| [9] | Zhihong Luo, Fujie Li, Chengliang Hu, Liankun Yin, Degui Li, Chenhao Ji, Xiangqun Zhuge, Kui Zhang, Kun Luo. Highly dispersed silver nanoparticles for performance-enhanced lithium oxygen batteries [J]. J. Mater. Sci. Technol., 2021, 73(0): 171-177. |
| [10] | Dong Zhao, Xiaoyang Wang, Ling Chang, Wenli Pei, Chun Wu, Fei Wang, Luran Zhang, Jianjun Wang, Qiang Wang. Synthesis of super-fine L10-FePt nanoparticles with high ordering degree by two-step sintering under high magnetic field [J]. J. Mater. Sci. Technol., 2021, 73(0): 178-185. |
| [11] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
| [12] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
| [13] | Hailin Yang, Yingying Zhang, Jianying Wang, Zhilin Liu, Chunhui Liu, Shouxun Ji. Additive manufacturing of a high strength Al-5Mg2Si-2Mg alloy: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 91(0): 215-223. |
| [14] | H.L. Wei, F.Q. Liu, L. Wei, T.T. Liu, W.H. Liao. Multiscale and multiphysics explorations of the transient deposition processes and additive characteristics during laser 3D printing [J]. J. Mater. Sci. Technol., 2021, 77(0): 196-208. |
| [15] | Y. Chew, Z.G. Zhu, F Weng, S.B. Gao, F.L. Ng, B.Y Lee, G.J. Bi. Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 38-46. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
