J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (11): 2570-2581.DOI: 10.1016/j.jmst.2019.07.014
• Orginal Article • Previous Articles Next Articles
She Huanab, Shu Dab*(), Dong Anpingb*(
), Wang Junbc, Sun Baodebc, Lai Hongchanga
Received:
2019-04-22
Revised:
2019-05-10
Accepted:
2019-05-29
Online:
2019-11-05
Published:
2019-10-21
Contact:
Shu Da,Dong Anping
About author:
1The authors equally contributed to this work.
She Huan, Shu Da, Dong Anping, Wang Jun, Sun Baode, Lai Hongchang. Relationship of particle stimulated nucleation, recrystallization and mechanical properties responding to Fe and Si contents in hot-extruded 7055 aluminum alloys[J]. J. Mater. Sci. Technol., 2019, 35(11): 2570-2581.
Alloy | Fe | Si | Zn | Mg | Cu | Mn | Cr | Ti | Zr | Al |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.041 | 0.024 | 8.25 | 2.29 | 2.17 | 0.0010 | 0 | 0.0006 | 0.12 | Bal. |
2 | 0.272 | 0.134 | 8.26 | 2.14 | 2.05 | 0.0012 | 0.0006 | 0.0023 | 0.15 | Bal. |
Table 1 Actual chemical compositions of experimental alloys (wt%).
Alloy | Fe | Si | Zn | Mg | Cu | Mn | Cr | Ti | Zr | Al |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.041 | 0.024 | 8.25 | 2.29 | 2.17 | 0.0010 | 0 | 0.0006 | 0.12 | Bal. |
2 | 0.272 | 0.134 | 8.26 | 2.14 | 2.05 | 0.0012 | 0.0006 | 0.0023 | 0.15 | Bal. |
Fig. 1. BSE images of 7055 alloys with different Fe and Si contents: (a, b) as-cast microstructures of alloys 1 and 2; (c, d) homogenized microstructures of alloys 1 and 2; (e, f) aged microstructures of alloys 1 and 2.
Alloy | Undissolved Coarse Intermetallic Particles | |
---|---|---|
Chemical composition | Shape | |
1 | η/S | Irregular |
Al7Cu2Fe | Rod-like | |
Mg2Si | Irregular | |
2 | η/S | Irregular |
Al7Cu2Fe/Al3Fe | Irregular | |
Mg2Si | Irregular |
Table 2 Undissolved coarse intermetallic particles in aged 7055 alloys with different Fe and Si contents.
Alloy | Undissolved Coarse Intermetallic Particles | |
---|---|---|
Chemical composition | Shape | |
1 | η/S | Irregular |
Al7Cu2Fe | Rod-like | |
Mg2Si | Irregular | |
2 | η/S | Irregular |
Al7Cu2Fe/Al3Fe | Irregular | |
Mg2Si | Irregular |
Fig. 2. Influences of Fe and Si contents on coarse intermetallic particles of aged 7055 alloys: (a) average length (l); (b) aspect ratio (λ); (c, d) number density distributions of alloys 1 and 2.
Fig. 3. EBSD patterns of the matrix surrounding coarse intermetallic particles in the longitudinal section of aged alloys: (a) η/S in alloy 1; (b) Al7Cu2Fe in alloy 1; (c) Al7Cu2Fe larger than 70 μm in alloy 1; (d) Al7Cu2Fe and Mg2Si in alloy 2.
Fig. 4. Area of PDZ around the particles in alloy 1 and alloy 2 (The scattered points come from the experiment data and the curves are fitted by Eqs. (2) and (3)).
Coarse intermetallic particles | fzone | H0 (μm-2) |
---|---|---|
Irregular η/S (alloy 1) | 1.33 | 0.0113 |
Rod-like Al7Cu2Fe (alloy 1) | 1.92 | 0.0167 |
Irregular Al7Cu2Fe (alloy 2) | 1.86 | 0.0439 |
Irregular Mg2Si (alloy 2) | 1.73 | 0.0239 |
Table 3 fzone and H0 of the four kinds of particles.
Coarse intermetallic particles | fzone | H0 (μm-2) |
---|---|---|
Irregular η/S (alloy 1) | 1.33 | 0.0113 |
Rod-like Al7Cu2Fe (alloy 1) | 1.92 | 0.0167 |
Irregular Al7Cu2Fe (alloy 2) | 1.86 | 0.0439 |
Irregular Mg2Si (alloy 2) | 1.73 | 0.0239 |
Fig. 5. Number and average diameter of grains in the PDZ of coarse intermetallic particles: (a) number of recrystallized grains (the scattered points come from the experiment data and the curves are fitted by Eqs. (5) and (6)); (b) average diameter of recrystallized grains; (c) number of subgrains; (d) average diameter of subgrains.
Fig. 6. Number of recrystallized grains with different orientation in the PDZ surrounding coarse intermetallic particles of different lengths: (a) <111>10°; (b) <100>15°; (c) <111>10°-25°; (d) <100>15°-30°; (e) R.
Fig. 7. (a, b) EBSD patterns colored with inverse pole figures in ED of longitudinal section for aged alloys 1 and 2 and (c, d) corresponding grain boundaries patterns of aged alloys 1 and 2.
Fig. 8. (a, b) Distribution of grain boundaries misorientation of alloys 1 and 2 and (c) effect of Fe and Si on number fraction of different misorientation grain boundaries.
Fig. 9. (a, b) Scattered inverse pole figures of alloys 1 and 2, (c) area fractions of <111>10° and <100>15° and (d) area fractions of <111>10°-25°, <100>15°-30° and random orientation.
Fig. 10. Areas of PSN grains deviated from the extruded fiber textures of coarse particles: (a) <111>10°-25°; (b) <100>15°-30°; (c) R; (d) <111>10°-25° + <100>15°-30° + R.
Fig. 11. Influence Fe and Si contents on the mechanical properties of aged 7055 alloys: (a) tensile stress-strain curves of alloys 1 and 2 loaded along extrusion direction; (b, c) SEM micrographs of tensile fracture surface for alloys 1 and 2.
|
[1] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[2] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[3] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[4] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[5] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[6] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[7] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[8] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[9] | Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing [J]. J. Mater. Sci. Technol., 2020, 47(0): 20-28. |
[10] | H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 136-138. |
[11] | Hao Jiang, Xuemin Geng, Simin Li, Hongyu Tu, Jiliang Wang, Lixia Bao, Peng Yang, Yanfen Wan. Multi-3D hierarchical biomass-based carbon particles absorber for solar desalination and thermoelectric power generator [J]. J. Mater. Sci. Technol., 2020, 59(0): 180-188. |
[12] | Gongcheng Yao, Chezheng Cao, Shuaihang Pan, Jie Yuan, Igor De Rosa, Xiaochun Li. Thermally stable ultrafine grained copper induced by CrB/CrB2 microparticles with surface nanofeatures via regular casting [J]. J. Mater. Sci. Technol., 2020, 58(0): 55-62. |
[13] | Xiawei Yang, Wenya Li, Siqi Yu, Yaxin Xu, Kaiwei Hu, Yaobang Zhao. Electrochemical characterization and microstructure of cold sprayed AA5083/Al2O3 composite coatings [J]. J. Mater. Sci. Technol., 2020, 59(0): 117-128. |
[14] | Yinchuan Wang, Hua Huang, Gaozhi Jia, Guizhou Ke, Jian Zhang, Guangyin Yuan. Effect of grain size on the mechanical properties of Mg foams [J]. J. Mater. Sci. Technol., 2020, 58(0): 46-54. |
[15] | Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment [J]. J. Mater. Sci. Technol., 2020, 43(0): 208-219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||