J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (11): 2205-2211.DOI: 10.1016/j.jmst.2018.02.021
Special Issue: Nanomaterials 2018
• Orginal Article • Previous Articles Next Articles
Qi Wangab, Guodong Wenb*(), Junnan Chenab, Dang Sheng Sub*(
)
Received:
2017-12-07
Revised:
2018-01-06
Accepted:
2018-02-07
Online:
2018-11-20
Published:
2018-11-26
Contact:
Wen Guodong,Sheng Su Dang
Qi Wang, Guodong Wen, Junnan Chen, Dang Sheng Su. Reinforcing epoxy resin with nitrogen doped carbon nanotube: A potential lightweight structure material[J]. J. Mater. Sci. Technol., 2018, 34(11): 2205-2211.
Entry | Samples (loading amount) | Tensile strength (MPa) | Tensile Modulus (GPa) | Elongation at break (%) | Impact strength (kJ/m2) | K1c (MPa m1/2) | G1c (kJ/m2) | G’30 (MPa) | Tg (°C) |
---|---|---|---|---|---|---|---|---|---|
1 | Neat epoxy | 65.0 ± 2.4 | 2.77 ± 0.13 | 5.5 ± 0.6 | 26.3 ± 2.1 | 1.16 ± 0.10 | 0.43 ± 0.03 | 757.6 | 106.9 |
2 | NCNT/epoxy (0.3 wt%) | 69.5 ± 1.0 | 2.79 ± 0.07 | 6.9 ± 0.6 | 33.2 ± 3.1 | 4.26 ± 0.12 | 5.74 ± 0.19 | 903.0 | 108.4 |
3 | NCNT/epoxy (0.5 wt%) | 76.3 ± 0.2 | 2.96 ± 0.10 | 6.3 ± 0.6 | 35.7 ± 0.9 | 4.34 ± 0.25 | 5.63 ± 0.13 | 775.4 | 104.7 |
4 | NCNT/epoxy (1 wt%) | 65.3 ± 0.7 | 2.63 ± 0.10 | 6.3 ± 0.1 | 24.6 ± 2.0 | 3.83 ± 0.04 | 4.92 ± 0.10 | 756.5 | 106.5 |
5 | CNT-epoxy (0.3 wt%) | 62.7 ± 0.5 | 2.68 ± 0.07 | 4.0 ± 0.4 | 32.2 ± 3.0 | 3.52 ± 0.12 | 4.09 ± 0.15 | 640.6 | 105.9 |
6 | CNT/epoxy (0.5 wt%) | 59.9 ± 1.3 | 2.47 ± 0.09 | 3.7 ± 0.4 | 22.3 ± 2.2 | 3.95 ± 0.13 | 5.59 ± 0.11 | 905.4 | 106.6 |
7 | CNT/epoxy (1 wt%) | 58.0 ± 2.8 | 2.47 ± 0.05 | 5.0 ± 0.5 | 31.3 ± 2.7 | 4.03 ± 0.18 | 5.82 ± 0.21 | 901.1 | 106.6 |
8 | CNT/epoxy (2 wt%) | 47.3 ± 2.6 | 2.50 ± 0.01 | 2.3 ± 0.3 | 16.5 ± 1.4 | 3.58 ± 0.10 | 4.53 ± 0.15 | 888.9 | 106.4 |
9 | oCNT/epoxy (1 wt%) | 69.5 ± 0.4 | 2.97 ± 0.04 | 4.8 ± 0.5 | 41.9 ± 3.1 | 3.73 ± 0.08 | 4.14 ± 0.12 | 698 0.6 | 107.3 |
Table 1 Mechanical performances of the as-obtained nanocomposites.
Entry | Samples (loading amount) | Tensile strength (MPa) | Tensile Modulus (GPa) | Elongation at break (%) | Impact strength (kJ/m2) | K1c (MPa m1/2) | G1c (kJ/m2) | G’30 (MPa) | Tg (°C) |
---|---|---|---|---|---|---|---|---|---|
1 | Neat epoxy | 65.0 ± 2.4 | 2.77 ± 0.13 | 5.5 ± 0.6 | 26.3 ± 2.1 | 1.16 ± 0.10 | 0.43 ± 0.03 | 757.6 | 106.9 |
2 | NCNT/epoxy (0.3 wt%) | 69.5 ± 1.0 | 2.79 ± 0.07 | 6.9 ± 0.6 | 33.2 ± 3.1 | 4.26 ± 0.12 | 5.74 ± 0.19 | 903.0 | 108.4 |
3 | NCNT/epoxy (0.5 wt%) | 76.3 ± 0.2 | 2.96 ± 0.10 | 6.3 ± 0.6 | 35.7 ± 0.9 | 4.34 ± 0.25 | 5.63 ± 0.13 | 775.4 | 104.7 |
4 | NCNT/epoxy (1 wt%) | 65.3 ± 0.7 | 2.63 ± 0.10 | 6.3 ± 0.1 | 24.6 ± 2.0 | 3.83 ± 0.04 | 4.92 ± 0.10 | 756.5 | 106.5 |
5 | CNT-epoxy (0.3 wt%) | 62.7 ± 0.5 | 2.68 ± 0.07 | 4.0 ± 0.4 | 32.2 ± 3.0 | 3.52 ± 0.12 | 4.09 ± 0.15 | 640.6 | 105.9 |
6 | CNT/epoxy (0.5 wt%) | 59.9 ± 1.3 | 2.47 ± 0.09 | 3.7 ± 0.4 | 22.3 ± 2.2 | 3.95 ± 0.13 | 5.59 ± 0.11 | 905.4 | 106.6 |
7 | CNT/epoxy (1 wt%) | 58.0 ± 2.8 | 2.47 ± 0.05 | 5.0 ± 0.5 | 31.3 ± 2.7 | 4.03 ± 0.18 | 5.82 ± 0.21 | 901.1 | 106.6 |
8 | CNT/epoxy (2 wt%) | 47.3 ± 2.6 | 2.50 ± 0.01 | 2.3 ± 0.3 | 16.5 ± 1.4 | 3.58 ± 0.10 | 4.53 ± 0.15 | 888.9 | 106.4 |
9 | oCNT/epoxy (1 wt%) | 69.5 ± 0.4 | 2.97 ± 0.04 | 4.8 ± 0.5 | 41.9 ± 3.1 | 3.73 ± 0.08 | 4.14 ± 0.12 | 698 0.6 | 107.3 |
Fig. 3. SEM images of the fracture surface of the CNT/epoxy (1 wt%) nanocomposite (a), the oCNT/epoxy (1 wt%) nanocomposite (b), the NCNT/epoxy (0.5 wt%) nanocomposite (c), and the NCNT/epoxy (1 wt%) nanocomposite (d).
Entry | CNT type | Tensile strength (MPa) | Tensile modulus (GPa) | Impact strength (kJ/m2) | K1c (Mpa m1/2) | G1c (kJ/m2) | Ref. |
---|---|---|---|---|---|---|---|
1 | DWCNT-NH2 | 69.13 ± 0.61 | 2.978 ± 0.024 | - | 0.93 ± 0.030 | - | [ |
2 | MWCNT-NH2 | 64.27 ± 0.32 | 2.820 ± 0.015 | - | 0.84 ± 0.028 | - | [ |
3 | a-MWNT | 73 ± 2 | - | - | 0.92 ± 0.09 | - | [ |
4 | HPEEK-g-MWNTs | 75 ± 5 | - | - | 1.06 ± 0.15 | - | [ |
5 | aligned MWCNT | - | 3.26 ± 0.05 | - | 0.98 ± 0.05 | 0.223 ± 0.013 | [ |
6 | COOH-MWCNT | - | - | - | 1.35 ± 0.20 | - | [ |
7 | MWCNTs/Ni | 54 ± 1.5 | 1.7 ± 0.05 | 7.2 ± 0.1 | - | - | [ |
8 | LP200 | - | - | - | 2.90 | - | [ |
9 | 0.3%CNT-1%CSCF | 75 | 2.46 | 1.9 | - | - | [ |
10 | MWCNT | - | - | 5.3 ± 0.3 | 0.49 ± 0.05 | - | [ |
11 | CNT-NH2 | - | - | 0.39 ± 0.06 | - | - | [ |
12 | CNT forest | - | - | - | - | 0.44 ± 0.01 | [ |
13 | SWCNT | 74.7 ± 3.2 | 3.49 ± 0.21 | - | 0.66 ± 0.04 | - | [ |
14 | MWCNT | 72.46 ± 5.24 | 3.69 ± 0.3 | - | 1.93 ± 0.19 | - | [ |
15 | MWCNT | 90.01 ± 1.23 | 2.93 ± 0.08 | - | 0.70 ± 0.06 | 0.14 | [ |
16 | MWCNT/Silica | 89.72 ± 5.13 | 3.42 ± 0.23 | - | 0.882 ± 0.056 | 0.199 ± 0.0143 | [ |
17 | MWCNT/LR | 70.67 ± 0.74 | 2.66 ± 0.15 | - | 1.174 ± 0.046 | 0.455 ± 15.17 | [ |
Table 2 Mechanical performances of the CNT/epoxy nanocomposites in literature.
Entry | CNT type | Tensile strength (MPa) | Tensile modulus (GPa) | Impact strength (kJ/m2) | K1c (Mpa m1/2) | G1c (kJ/m2) | Ref. |
---|---|---|---|---|---|---|---|
1 | DWCNT-NH2 | 69.13 ± 0.61 | 2.978 ± 0.024 | - | 0.93 ± 0.030 | - | [ |
2 | MWCNT-NH2 | 64.27 ± 0.32 | 2.820 ± 0.015 | - | 0.84 ± 0.028 | - | [ |
3 | a-MWNT | 73 ± 2 | - | - | 0.92 ± 0.09 | - | [ |
4 | HPEEK-g-MWNTs | 75 ± 5 | - | - | 1.06 ± 0.15 | - | [ |
5 | aligned MWCNT | - | 3.26 ± 0.05 | - | 0.98 ± 0.05 | 0.223 ± 0.013 | [ |
6 | COOH-MWCNT | - | - | - | 1.35 ± 0.20 | - | [ |
7 | MWCNTs/Ni | 54 ± 1.5 | 1.7 ± 0.05 | 7.2 ± 0.1 | - | - | [ |
8 | LP200 | - | - | - | 2.90 | - | [ |
9 | 0.3%CNT-1%CSCF | 75 | 2.46 | 1.9 | - | - | [ |
10 | MWCNT | - | - | 5.3 ± 0.3 | 0.49 ± 0.05 | - | [ |
11 | CNT-NH2 | - | - | 0.39 ± 0.06 | - | - | [ |
12 | CNT forest | - | - | - | - | 0.44 ± 0.01 | [ |
13 | SWCNT | 74.7 ± 3.2 | 3.49 ± 0.21 | - | 0.66 ± 0.04 | - | [ |
14 | MWCNT | 72.46 ± 5.24 | 3.69 ± 0.3 | - | 1.93 ± 0.19 | - | [ |
15 | MWCNT | 90.01 ± 1.23 | 2.93 ± 0.08 | - | 0.70 ± 0.06 | 0.14 | [ |
16 | MWCNT/Silica | 89.72 ± 5.13 | 3.42 ± 0.23 | - | 0.882 ± 0.056 | 0.199 ± 0.0143 | [ |
17 | MWCNT/LR | 70.67 ± 0.74 | 2.66 ± 0.15 | - | 1.174 ± 0.046 | 0.455 ± 15.17 | [ |
|
[1] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[2] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[3] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[4] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[5] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[6] | Huan Liu, Chao Sun, Ce Wang, Yuhua Li, Jing Bai, Feng Xue, Aibin Ma, Jinghua Jiang. Improving toughness of a Mg2Ca-containing Mg-Al-Ca-Mn alloy via refinement and uniform dispersion of Mg2Ca particles [J]. J. Mater. Sci. Technol., 2020, 59(0): 61-71. |
[7] | Min Jung Kim, Gyeol Chan Kang, Sung Hwan Hong, Hae Jin Park, Sang Chul Mun, Gian Song, Ki Buem Kim. Understanding microstructure and mechanical properties of (AlTa0.76)xCoCrFeNi2.1 eutectic high entropy alloys via thermo-physical parameters [J]. J. Mater. Sci. Technol., 2020, 57(0): 131-137. |
[8] | Mohammad Nasim, Yuncang Li, Ming Wen, Cuie Wen. A review of high-strength nanolaminates and evaluation of their properties [J]. J. Mater. Sci. Technol., 2020, 50(0): 215-244. |
[9] | Hanghang Liu, Paixian Fu, Hongwei Liu, Yanfei Cao, Chen Sun, Ningyu Du, Dianzhong Li. Effects of Rare Earth elements on microstructure evolution and mechanical properties of 718H pre-hardened mold steel [J]. J. Mater. Sci. Technol., 2020, 50(0): 245-256. |
[10] | Sharafadeen Kunle Kolawole, Wang Hai, Shuyuan Zhang, Ziqing Sun, Muhammad Ali Siddiqui, Ihsan Ullah, Wei Song, Frank Witte, Ke Yang. Preliminary study of microstructure, mechanical properties and corrosion resistance of antibacterial Ti-15Zr-xCu alloy for dental application [J]. J. Mater. Sci. Technol., 2020, 50(0): 31-43. |
[11] | Ran Wei, Kaisheng Zhang, Liangbin Chen, Zhenhua Han, Chen Chen, Tan Wang, Jianzhong Jiang, Tingwei Hu, Shaokang Guan, Fushan Li. Toughening FeMn-based high-entropy alloys via retarding phase transformation [J]. J. Mater. Sci. Technol., 2020, 51(0): 167-172. |
[12] | Qinglin Li, Shang Zhao, Xuepeng Bao, Yushi Zhang, Yuqian Zhu, Chuangzao Wang, Yefeng Lan, Yuxin Zhang, Tiandong Xia. Effects of AlCoCrFeNiTi high-entropy alloy on microstructure and mechanical properties of pure aluminum [J]. J. Mater. Sci. Technol., 2020, 52(0): 1-11. |
[13] | Xiru Hua, Qiang Yang, Dongdong Zhang, Fanzhi Meng, Chong Chen, Zihao You, Jinghuai Zhang, Shuhui Lv, Jian Meng. Microstructures and mechanical properties of a newly developed high-pressure die casting Mg-Zn-RE alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 174-184. |
[14] | Enkang Hao, Yulong An, Xia Liu, Yijing Wang, Huidi Zhou, Fengyuan Yan. Effect of annealing treatment on microstructures, mechanical properties and cavitation erosion performance of high velocity oxy-fuel sprayed NiCoCrAlYTa coating [J]. J. Mater. Sci. Technol., 2020, 53(0): 19-31. |
[15] | Yinchuan Wang, Hua Huang, Gaozhi Jia, Guizhou Ke, Jian Zhang, Guangyin Yuan. Effect of grain size on the mechanical properties of Mg foams [J]. J. Mater. Sci. Technol., 2020, 58(0): 46-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||